The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

HIV-1

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of HIV-1

  • BACKGROUND: The optimal duration of zidovudine administration to prevent perinatal transmission of human immunodeficiency virus type 1 (HIV-1) should be determined to facilitate its use in areas where resources are limited [1].
  • We report that HIV-1 Vif forms a complex with human APOBEC3G that prevents its virion encapsidation [2].
  • These findings indicate the importance of CKR-5 in HIV-1 transmission and suggest that targeting the HIV-1-CKR-5 interaction may provide a means of preventing or slowing disease progression [3].
  • In three of them, we studied cryopreserved lymphocytes obtained earlier, using the polymerase chain reaction to amplify small amounts of viral DNA, and we demonstrated that HIV-1 provirus had been present 23, 35, and 35 months before seroconversion [4].
  • Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid [5].
 

Psychiatry related information on HIV-1

 

High impact information on HIV-1

  • The glycoprotein (gp) 120 subunit is an important part of the envelope spikes that decorate the surface of HIV-1 and a major target for neutralizing antibodies [11].
  • GP120: Target for Neutralizing HIV-1 Antibodies [11].
  • Genetic findings have yielded major insights into the in vivo roles of individual coreceptors and their ligands; of particular importance is the discovery of an inactivating mutation in the CCR5 gene which, in homozygous form, confers strong resistance to HIV-1 infection [12].
  • In this issue of Cell, take an integrated computational-experimental approach to study the Tat transactivation feedback loop of HIV-1 [13].
  • Previously, CRM1 was identified as a cellular cofactor for Rev-dependent export of intron-containing HIV-1 RNA [14].
 

Chemical compound and disease context of HIV-1

  • The results of this study support the hypothesis that in HIV-1 infection, early treatment with zidovudine and PCP prophylaxis improves survival in addition to slowing the progression to AIDS [15].
  • Combination therapy was also more effective than lamivudine alone in lowering plasma HIV-1 RNA levels and increasing the percentage of CD4+ cells (P < 0.001 for all comparisons), and these advantages persisted through 52 weeks [16].
  • CONCLUSIONS: Although further observations are needed, it appears that in infants with maternally acquired HIV-1 infection, combined treatment with zidovudine, didanosine, and nevirapine is well tolerated and has sustained efficacy against HIV-1 [17].
  • We assessed the safety and efficacy of ritonavir in patients with HIV-1 infection [18].
  • RESULTS: Suppression of plasma HIV-1 RNA to undetectable levels was achieved in more patients in the group given efavirenz plus nucleoside reverse-transcriptase inhibitors than in the group given indinavir plus nucleoside reverse-transcriptase inhibitors (70 percent vs. 48 percent, P<0.001) [19].
 

Biological context of HIV-1

 

Anatomical context of HIV-1

  • T cells therefore can become competent for HIV-1 replication by control of regulated host factors such as the NFATc transcription factor [24].
  • CCR5, when expressed along with CD4, the HIV-1 receptor, allowed cell lines resistant to most primary HIV-1 isolates to be infected [25].
  • Expression of CKR-5 with CD4 enables nonpermissive cells to form syncytia with cells expressing M-tropic, but not T-tropic, HIV-1 env proteins [26].
  • METHODS: We collected peripheral-blood and semen samples from seven men with HIV-1 infections who were receiving highly active antiretroviral therapy and who had no detectable viral RNA (fewer than 50 copies per milliliter) in plasma and analyzed the samples for cell-associated proviral DNA using a quantitative polymerase-chain-reaction assay [27].
  • Here, we describe the properties of a DC-specific C-type lectin, DC-SIGN, that is highly expressed on DC present in mucosal tissues and binds to the HIV-1 envelope glycoprotein gp120 [28].
 

Gene context of HIV-1

  • CXCR4, another important HIV-1 coreceptor, is also sulfated [29].
  • HIV-1 Vif did not efficiently form a complex with mouse APOBEC3G [2].
  • Utilization of CCR3 and CCR5 on the target cell depended upon the sequence of the third variable (V3) region of the HIV-1 gp120 exterior envelope glycoprotein [25].
  • A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA [30].
  • In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression [31].
 

Analytical, diagnostic and therapeutic context of HIV-1

  • Of 220 blood units with repeatedly reactive p24 antigen whose presence could not be confirmed by neutralization (0.04 percent of the donations studied), none were positive for HIV-1 antibody, HIV-1 by polymerase chain reaction (120 units tested), or virus culture (76 units tested)--attesting to the specificity of confirmatory neutralization [32].
  • Although p24 core antigenemia and viral isolation have previously been described during primary HIV-1 infection, this report documents the large viral burden during the acute phase of infection [33].
  • Here we show that vaccination of cynomolgus monkeys with a biologically active HIV-1 Tat protein is safe, elicits a broad (humoral and cellular) specific immune response and reduces infection with the highly pathogenic simian-human immunodeficiency virus (SHIV)-89.6P to undetectable levels, preventing the CD4+ T-cell decrease [34].
  • Long-lasting protection, requiring only three immunizations, was achieved against a low-dose challenge with the SF2 strain of HIV-1 and a subsequent high-dose SF2 challenge administered 1 year later without an intervening boost [35].
  • RESULTS: Of 421 donors who were positive for HIV-1 by Western blot, 39 (9.3%) met the criteria of possible false positivity because they lacked reactivity to p31 [36].

References

  1. A trial of shortened zidovudine regimens to prevent mother-to-child transmission of human immunodeficiency virus type 1. Perinatal HIV Prevention Trial (Thailand) Investigators. Lallemant, M., Jourdain, G., Le Coeur, S., Kim, S., Koetsawang, S., Comeau, A.M., Phoolcharoen, W., Essex, M., McIntosh, K., Vithayasai, V. N. Engl. J. Med. (2000) [Pubmed]
  2. Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Mariani, R., Chen, D., Schröfelbauer, B., Navarro, F., König, R., Bollman, B., Münk, C., Nymark-McMahon, H., Landau, N.R. Cell (2003) [Pubmed]
  3. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Liu, R., Paxton, W.A., Choe, S., Ceradini, D., Martin, S.R., Horuk, R., MacDonald, M.E., Stuhlmann, H., Koup, R.A., Landau, N.R. Cell (1996) [Pubmed]
  4. Human immunodeficiency virus type 1 infection in homosexual men who remain seronegative for prolonged periods. Imagawa, D.T., Lee, M.H., Wolinsky, S.M., Sano, K., Morales, F., Kwok, S., Sninsky, J.J., Nishanian, P.G., Giorgi, J., Fahey, J.L. N. Engl. J. Med. (1989) [Pubmed]
  5. Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Gamble, T.R., Vajdos, F.F., Yoo, S., Worthylake, D.K., Houseweart, M., Sundquist, W.I., Hill, C.P. Cell (1996) [Pubmed]
  6. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Zou, Y.R., Kottmann, A.H., Kuroda, M., Taniuchi, I., Littman, D.R. Nature (1998) [Pubmed]
  7. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Feng, Y., Broder, C.C., Kennedy, P.E., Berger, E.A. Science (1996) [Pubmed]
  8. Bacterial lipopolysaccharide selectively up-regulates the function of the chemotactic peptide receptor formyl peptide receptor 2 in murine microglial cells. Cui, Y.H., Le, Y., Gong, W., Proost, P., Van Damme, J., Murphy, W.J., Wang, J.M. J. Immunol. (2002) [Pubmed]
  9. Differences among HIV-1 variants in their ability to elicit secretion of TNF-alpha. Khanna, K.V., Yu, X.F., Ford, D.H., Ratner, L., Hildreth, J.K., Markham, R.B. J. Immunol. (2000) [Pubmed]
  10. Longitudinal assessment of the effects of drug and alcohol abuse on HIV-1 treatment outcomes in an urban clinic. Lucas, G.M., Gebo, K.A., Chaisson, R.E., Moore, R.D. AIDS (2002) [Pubmed]
  11. GP120: Target for Neutralizing HIV-1 Antibodies. Pantophlet, R., Burton, D.R. Annu. Rev. Immunol. (2006) [Pubmed]
  12. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Berger, E.A., Murphy, P.M., Farber, J.M. Annu. Rev. Immunol. (1999) [Pubmed]
  13. And the noise played on: stochastic gene expression and HIV-1 infection. Blake, W.J., Collins, J.J. Cell (2005) [Pubmed]
  14. Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. Yedavalli, V.S., Neuveut, C., Chi, Y.H., Kleiman, L., Jeang, K.T. Cell (2004) [Pubmed]
  15. The effects on survival of early treatment of human immunodeficiency virus infection. Graham, N.M., Zeger, S.L., Park, L.P., Vermund, S.H., Detels, R., Rinaldo, C.R., Phair, J.P. N. Engl. J. Med. (1992) [Pubmed]
  16. Treatment with lamivudine, zidovudine, or both in HIV-positive patients with 200 to 500 CD4+ cells per cubic millimeter. North American HIV Working Party. Eron, J.J., Benoit, S.L., Jemsek, J., MacArthur, R.D., Santana, J., Quinn, J.B., Kuritzkes, D.R., Fallon, M.A., Rubin, M. N. Engl. J. Med. (1995) [Pubmed]
  17. Combination treatment with zidovudine, didanosine, and nevirapine in infants with human immunodeficiency virus type 1 infection. Luzuriaga, K., Bryson, Y., Krogstad, P., Robinson, J., Stechenberg, B., Lamson, M., Cort, S., Sullivan, J.L. N. Engl. J. Med. (1997) [Pubmed]
  18. A preliminary study of ritonavir, an inhibitor of HIV-1 protease, to treat HIV-1 infection. Markowitz, M., Saag, M., Powderly, W.G., Hurley, A.M., Hsu, A., Valdes, J.M., Henry, D., Sattler, F., La Marca, A., Leonard, J.M. N. Engl. J. Med. (1995) [Pubmed]
  19. Efavirenz plus zidovudine and lamivudine, efavirenz plus indinavir, and indinavir plus zidovudine and lamivudine in the treatment of HIV-1 infection in adults. Study 006 Team. Staszewski, S., Morales-Ramirez, J., Tashima, K.T., Rachlis, A., Skiest, D., Stanford, J., Stryker, R., Johnson, P., Labriola, D.F., Farina, D., Manion, D.J., Ruiz, N.M. N. Engl. J. Med. (1999) [Pubmed]
  20. A nuclear translational block imposed by the HIV-1 U3 region is relieved by the Tat-TAR interaction. Braddock, M., Thorburn, A.M., Chambers, A., Elliott, G.D., Anderson, G.J., Kingsman, A.J., Kingsman, S.M. Cell (1990) [Pubmed]
  21. TAR-independent activation of the HIV-1 LTR: evidence that tat requires specific regions of the promoter. Berkhout, B., Gatignol, A., Rabson, A.B., Jeang, K.T. Cell (1990) [Pubmed]
  22. Identification of a novel cellular cofactor for the Rev/Rex class of retroviral regulatory proteins. Bogerd, H.P., Fridell, R.A., Madore, S., Cullen, B.R. Cell (1995) [Pubmed]
  23. Maternal viral load, zidovudine treatment, and the risk of transmission of human immunodeficiency virus type 1 from mother to infant. Pediatric AIDS Clinical Trials Group Protocol 076 Study Group. Sperling, R.S., Shapiro, D.E., Coombs, R.W., Todd, J.A., Herman, S.A., McSherry, G.D., O'Sullivan, M.J., Van Dyke, R.B., Jimenez, E., Rouzioux, C., Flynn, P.M., Sullivan, J.L. N. Engl. J. Med. (1996) [Pubmed]
  24. Host control of HIV-1 parasitism in T cells by the nuclear factor of activated T cells. Kinoshita, S., Chen, B.K., Kaneshima, H., Nolan, G.P. Cell (1998) [Pubmed]
  25. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Choe, H., Farzan, M., Sun, Y., Sullivan, N., Rollins, B., Ponath, P.D., Wu, L., Mackay, C.R., LaRosa, G., Newman, W., Gerard, N., Gerard, C., Sodroski, J. Cell (1996) [Pubmed]
  26. A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Doranz, B.J., Rucker, J., Yi, Y., Smyth, R.J., Samson, M., Peiper, S.C., Parmentier, M., Collman, R.G., Doms, R.W. Cell (1996) [Pubmed]
  27. Human immunodeficiency virus type 1 in the semen of men receiving highly active antiretroviral therapy. Zhang, H., Dornadula, G., Beumont, M., Livornese, L., Van Uitert, B., Henning, K., Pomerantz, R.J. N. Engl. J. Med. (1998) [Pubmed]
  28. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Geijtenbeek, T.B., Kwon, D.S., Torensma, R., van Vliet, S.J., van Duijnhoven, G.C., Middel, J., Cornelissen, I.L., Nottet, H.S., KewalRamani, V.N., Littman, D.R., Figdor, C.G., van Kooyk, Y. Cell (2000) [Pubmed]
  29. Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Farzan, M., Mirzabekov, T., Kolchinsky, P., Wyatt, R., Cayabyab, M., Gerard, N.P., Gerard, C., Sodroski, J., Choe, H. Cell (1999) [Pubmed]
  30. A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Wei, P., Garber, M.E., Fang, S.M., Fischer, W.H., Jones, K.A. Cell (1998) [Pubmed]
  31. In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression. Scarlatti, G., Tresoldi, E., Björndal, A., Fredriksson, R., Colognesi, C., Deng, H.K., Malnati, M.S., Plebani, A., Siccardi, A.G., Littman, D.R., Fenyö, E.M., Lusso, P. Nat. Med. (1997) [Pubmed]
  32. Prevalence of human immunodeficiency virus type 1 p24 antigen in U.S. blood donors--an assessment of the efficacy of testing in donor screening. The HIV-Antigen Study Group. Alter, H.J., Epstein, J.S., Swenson, S.G., VanRaden, M.J., Ward, J.W., Kaslow, R.A., Menitove, J.E., Klein, H.G., Sandler, S.G., Sayers, M.H. N. Engl. J. Med. (1990) [Pubmed]
  33. Transient high levels of viremia in patients with primary human immunodeficiency virus type 1 infection. Daar, E.S., Moudgil, T., Meyer, R.D., Ho, D.D. N. Engl. J. Med. (1991) [Pubmed]
  34. Control of SHIV-89.6P-infection of cynomolgus monkeys by HIV-1 Tat protein vaccine. Cafaro, A., Caputo, A., Fracasso, C., Maggiorella, M.T., Goletti, D., Baroncelli, S., Pace, M., Sernicola, L., Koanga-Mogtomo, M.L., Betti, M., Borsetti, A., Belli, R., Akerblom, L., Corrias, F., Buttò, S., Heeney, J., Verani, P., Titti, F., Ensoli, B. Nat. Med. (1999) [Pubmed]
  35. Long-term protection of chimpanzees against high-dose HIV-1 challenge induced by immunization. Lubeck, M.D., Natuk, R., Myagkikh, M., Kalyan, N., Aldrich, K., Sinangil, F., Alipanah, S., Murthy, S.C., Chanda, P.K., Nigida, S.M., Markham, P.D., Zolla-Pazner, S., Steimer, K., Wade, M., Reitz, M.S., Arthur, L.O., Mizutani, S., Davis, A., Hung, P.P., Gallo, R.C., Eichberg, J., Robert-Guroff, M. Nat. Med. (1997) [Pubmed]
  36. False-positive HIV-1 test results in a low-risk screening setting of voluntary blood donation. Retrovirus Epidemiology Donor Study. Kleinman, S., Busch, M.P., Hall, L., Thomson, R., Glynn, S., Gallahan, D., Ownby, H.E., Williams, A.E. JAMA (1998) [Pubmed]
 
WikiGenes - Universities