The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Ex planta phytoremediation of trichlorophenol and phenolic allelochemicals via an engineered secretory laccase.

Plant roots release a range of enzymes capable of degrading chemical compounds in their immediate vicinity. We present a system of phytoremediation ex planta based on the overexpression of one such enzyme, a secretory laccase. Laccases catalyze the oxidation of a broad range of phenolic compounds, including polychlorinated phenols such as 2,4,6-trichlorophenol (TCP), that are among the most hazardous and recalcitrant pollutants in the environment. We isolated a secretory laccase cDNA of LAC1, which is specifically expressed in the roots of Gossypium arboreum (cotton). Transgenic Arabidopsis thaliana plants overexpressing LAC1 exhibited enhanced resistance to several phenolic allelochemicals and TCP. The secretory laccase activity in these plants was responsible for the conversion of sinapic acid into a mono-lactone type dimer and for the transformation of TCP.[1]

References

 
WikiGenes - Universities