The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Sinapate     (E)-3-(4-hydroxy-3,5- dimethoxy-phenyl)prop...

Synonyms: SINAPINATE, Sinapinic acid, AC1LCUXW, Synapoic acid, SINAPIC ACID, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of SINAPIC ACID

 

High impact information on SINAPIC ACID

 

Chemical compound and disease context of SINAPIC ACID

 

Biological context of SINAPIC ACID

 

Anatomical context of SINAPIC ACID

  • The dehydrodisinapates presumably derive from radical coupling of sinapate-polymer esters in the cell wall; the radical coupling origin is further confirmed by finding 8-8 and 8-5 (and possibly 8-O-4) sinapate-ferulate cross-products [15].
  • In this study, we used the in vitro Caco-2 model of human small intestinal epithelium to investigate the metabolism of the major dietary hydroxycinnamates (ferulate, sinapate, p-coumarate, and caffeate) and of diferulates [16].
 

Associations of SINAPIC ACID with other chemical compounds

 

Gene context of SINAPIC ACID

  • Remarkably, one isoenzyme (4CL1) was able to convert sinapate; thus the first cDNA encoding a 4CL that accepts highly substituted cinnamic acids is available for further studies on branches of phenylpropanoid metabolism that probably lead to the precursors of lignin [21].
  • The reduced epidermal fluorescence1 (ref1) mutant of Arabidopsis thaliana accumulates only 10 to 30% of the sinapate esters found in wild-type plants [6].
  • The fah1 mutant of Arabidopsis is defective in the accumulation of sinapic acid-derived metabolites, including the guaiacyl-syringyl lignin typical of angiosperms [22].
  • Therefore, AtOMT1 enzymatic activity appears to be involved not only in lignin formation but also in the biosynthesis of sinapate esters [19].
  • The presence of methyl sinapate in plating agar medium decreased the survival of UV-irradiated cells of a recombination-repair-deficient strain, CM571 recA [23].
 

Analytical, diagnostic and therapeutic context of SINAPIC ACID

References

  1. Matrix-assisted laser desorption/ionization-mass spectrometry of hydrophobic proteins in mixtures using formic Acid, perfluorooctanoic Acid, and sorbitol. Loo, R.R., Loo, J.A. Anal. Chem. (2007) [Pubmed]
  2. Enhancing effects of cinoxate and methyl sinapate on the frequencies of sister-chromatid exchanges and chromosome aberrations in cultured mammalian cells. Shimoi, K., Nakamura, Y., Noro, T., Tomita, I., Sasaki, Y.F., Imanishi, H., Matsumoto, K., Shirasu, Y. Mutat. Res. (1989) [Pubmed]
  3. Optimization of MALDI-TOF MS for strain level differentiation of Arthrobacter isolates. Vargha, M., Takáts, Z., Konopka, A., Nakatsu, C.H. J. Microbiol. Methods (2006) [Pubmed]
  4. Antithiamine effect of methyl sinapate on the growth of Staphylococcus aureus & on rat erythrocyte transketolase activity. Bhattacharya, J., Chaudhuri, D.K. Indian J. Exp. Biol. (1975) [Pubmed]
  5. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. Jin, H., Cominelli, E., Bailey, P., Parr, A., Mehrtens, F., Jones, J., Tonelli, C., Weisshaar, B., Martin, C. EMBO J. (2000) [Pubmed]
  6. The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis. Nair, R.B., Bastress, K.L., Ruegger, M.O., Denault, J.W., Chapple, C. Plant Cell (2004) [Pubmed]
  7. An Arabidopsis mutant defective in the general phenylpropanoid pathway. Chapple, C.C., Vogt, T., Ellis, B.E., Somerville, C.R. Plant Cell (1992) [Pubmed]
  8. The 4-coumarate:CoA ligase gene family in Arabidopsis thaliana comprises one rare, sinapate-activating and three commonly occurring isoenzymes. Hamberger, B., Hahlbrock, K. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  9. The substrate specificity-determining amino acid code of 4-coumarate:CoA ligase. Schneider, K., Hövel, K., Witzel, K., Hamberger, B., Schomburg, D., Kombrink, E., Stuible, H.P. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  10. Cloning and heterologous expression of a rape cDNA encoding UDP-glucose:sinapate glucosyltransferase. Milkowski, C., Baumert, A., Strack, D. Planta (2000) [Pubmed]
  11. Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-regulation of caffeoyl-coenzyme A O-methyltransferase, an enzyme involved in lignin biosynthesis. Meyermans, H., Morreel, K., Lapierre, C., Pollet, B., De Bruyn, A., Busson, R., Herdewijn, P., Devreese, B., Van Beeumen, J., Marita, J.M., Ralph, J., Chen, C., Burggraeve, B., Van Montagu, M., Messens, E., Boerjan, W. J. Biol. Chem. (2000) [Pubmed]
  12. Regulation of ferulate-5-hydroxylase expression in Arabidopsis in the context of sinapate ester biosynthesis. Ruegger, M., Meyer, K., Cusumano, J.C., Chapple, C. Plant Physiol. (1999) [Pubmed]
  13. Identification of a CYP84 family of cytochrome P450-dependent mono-oxygenase genes in Brassica napus and perturbation of their expression for engineering sinapine reduction in the seeds. Nair, R.B., Joy, R.W., Kurylo, E., Shi, X., Schnaider, J., Datla, R.S., Keller, W.A., Selvaraj, G. Plant Physiol. (2000) [Pubmed]
  14. Biotransformation of Sinapic Acid Catalyzed by Momordica charantia Peroxidase. Liu, H.L., Wan, X., Huang, X.F., Kong, L.Y. J. Agric. Food Chem. (2007) [Pubmed]
  15. Sinapate dehydrodimers and sinapate-ferulate heterodimers in cereal dietary fiber. Bunzel, M., Ralph, J., Kim, H., Lu, F., Ralph, S.A., Marita, J.M., Hatfield, R.D., Steinhart, H. J. Agric. Food Chem. (2003) [Pubmed]
  16. Characterization of metabolites of hydroxycinnamates in the in vitro model of human small intestinal epithelium caco-2 cells. Kern, S.M., Bennett, R.N., Needs, P.W., Mellon, F.A., Kroon, P.A., Garcia-Conesa, M.T. J. Agric. Food Chem. (2003) [Pubmed]
  17. Identification of glucosyltransferase genes involved in sinapate metabolism and lignin synthesis in Arabidopsis. Lim, E.K., Li, Y., Parr, A., Jackson, R., Ashford, D.A., Bowles, D.J. J. Biol. Chem. (2001) [Pubmed]
  18. Expression, characterization, and purification of C-terminally hexahistidine-tagged thromboxane A2 receptors. Pawate, S., Schey, K.L., Meier, G.P., Ullian, M.E., Mais, D.E., Halushka, P.V. J. Biol. Chem. (1998) [Pubmed]
  19. A new Arabidopsis thaliana mutant deficient in the expression of O-methyltransferase impacts lignins and sinapoyl esters. Goujon, T., Sibout, R., Pollet, B., Maba, B., Nussaume, L., Bechtold, N., Lu, F., Ralph, J., Mila, I., Barrière, Y., Lapierre, C., Jouanin, L. Plant Mol. Biol. (2003) [Pubmed]
  20. Multiform biosynthetic pathway of syringyl lignin in angiosperms. Yamauchi, K., Yasuda, S., Hamada, K., Tsutsumi, Y., Fukushima, K. Planta (2003) [Pubmed]
  21. Divergent members of a soybean (Glycine max L.) 4-coumarate:coenzyme A ligase gene family. Lindermayr, C., Möllers, B., Fliegmann, J., Uhlmann, A., Lottspeich, F., Meimberg, H., Ebel, J. Eur. J. Biochem. (2002) [Pubmed]
  22. Ferulate-5-hydroxylase from Arabidopsis thaliana defines a new family of cytochrome P450-dependent monooxygenases. Meyer, K., Cusumano, J.C., Somerville, C., Chapple, C.C. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  23. Methyl cinnamate derivatives enhance UV-induced mutagenesis due to the inhibition of DNA excision repair in Escherichia coli B/r. Shimoi, K., Nakamura, Y., Noro, T., Tomita, I., Fukushima, S., Inoue, T., Kada, T. Mutat. Res. (1985) [Pubmed]
  24. Interaction of hydroxycinnamic acid derivatives with the Cl3COO radical: a pulse radiolysis study. Pan, J.X., Wang, W.F., Lin, W.Z., Lu, C.Y., Han, Z.H., Yao, S.D., Lin, N.Y. Free Radic. Res. (1999) [Pubmed]
  25. Comparison of 3 methods for the determination of sinapic acid ester content in enzymatically treated canola meals. Lacki, K., Duvnjak, Z. Appl. Microbiol. Biotechnol. (1996) [Pubmed]
  26. Characterization in vitro and in vivo of the putative multigene 4-coumarate:CoA ligase network in Arabidopsis: syringyl lignin and sinapate/sinapyl alcohol derivative formation. Costa, M.A., Bedgar, D.L., Moinuddin, S.G., Kim, K.W., Cardenas, C.L., Cochrane, F.C., Shockey, J.M., Helms, G.L., Amakura, Y., Takahashi, H., Milhollan, J.K., Davin, L.B., Browse, J., Lewis, N.G. Phytochemistry (2005) [Pubmed]
  27. Analysis of differential protein expression in Actinobacillus pleuropneumoniae by Surface Enhanced Laser Desorption Ionisation--ProteinChip (SELDI) technology. Hodgetts, A., Bossé, J.T., Kroll, J.S., Langford, P.R. Vet. Microbiol. (2004) [Pubmed]
  28. Hydroxycinnamic acids do not prevent aortic atherosclerosis in hypercholesterolemic golden Syrian hamsters. Auger, C., Laurent, N., Laurent, C., Besançon, P., Caporiccio, B., Teissédre, P.L., Rouanet, J.M. Life Sci. (2004) [Pubmed]
 
WikiGenes - Universities