The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Site-specific labelling with a metal chelator for protein-structure refinement.

A single free Cys sidechain in the N-terminal domain of the E. coli arginine repressor was covalently derivatized with S-cysteaminyl-EDTA for site-specific attachment of paramagnetic metal ions. The effects of chelated metal ions were monitored with (15)N-HSQC spectra. Complexation of Co(2+), which has a fast relaxing electron spin, resulted in significant pseudocontact shifts, but also in peak doubling which was attributed to the possibility of forming two different stereoisomers of the EDTA-Co(2+) complex. In contrast, complexation of Cu(2+) or Mn(2+), which have slowly relaxing electron spins, did not produce chemical shift changes and yielded self-consistent sets of paramagnetic relaxation enhancements of the amide protons. T (1) relaxation enhancements with Cu(2+) combined with T (2) relaxation enhancements with Mn(2+) are shown to provide accurate distance restraints ranging from 9 to 25 A. These long-range distance restraints can be used for structural studies inaccessible to NOEs. As an example, the structure of a solvent-exposed loop in the N-terminal domain of the E. coli arginine repressor was refined by paramagnetic restraints. Electronic correlation times of Cu(2+) and Mn(2+) were determined from a comparison of T (1) and T (2) relaxation enhancements.[1]

References

  1. Site-specific labelling with a metal chelator for protein-structure refinement. Pintacuda, G., Moshref, A., Leonchiks, A., Sharipo, A., Otting, G. J. Biomol. NMR (2004) [Pubmed]
 
WikiGenes - Universities