The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Computer-assisted design of selective imidazole inhibitors for cytochrome p450 enzymes.

A modified version of the DOCK program has been used to predict inhibitors for cytochrome P450cam and its L244A mutant. A library of azole compounds was designed in silico and screened for binding to wild-type P450cam. Lead compounds were synthesized and found to inhibit wild-type P450cam. To test our approach to designing ligands that discriminate between closely related sites, the azole library was DOCKed into both the active sites of wild-type P450cam and its L244A mutant. The L244A active site is predicted to be slightly larger than that of wild-type P450cam. Ligands predicted to have a high affinity for the mutant alone were synthesized and assayed with the recombinant enzymes. All of the compounds showed inhibition of the L244A enzyme (IC(50) = 6-40 microM), and the compounds that were predicted to be too large to bind to the wild-type showed poor inhibition (IC(50) > or = 1 mM). The binding mode was shown to be similar to that predicted by our modified version of DOCK by spectroscopic analysis. A discrepancy between the IC(50) values and spectroscopic K(s) values indicates that the spectroscopic binding constants do not accurately estimate inhibitory activity. This study, the first report of computer-assisted ligand (drug) design for P450 enzymes in which the coordination bond between imidazole and the heme is explicitly considered in structural modeling, opens a promising design avenue because azole compounds are widely used as P450 enzyme inhibitors and drugs.[1]


  1. Computer-assisted design of selective imidazole inhibitors for cytochrome p450 enzymes. Verras, A., Kuntz, I.D., Ortiz de Montellano, P.R. J. Med. Chem. (2004) [Pubmed]
WikiGenes - Universities