The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Phenotypic characterization of glucose repression mutants of Saccharomyces cerevisiae using experiments with 13C-labelled glucose.

In the field of metabolic engineering and functional genomics, methods for analysis of metabolic fluxes in the cell are attractive as they give an overview of the phenotypic response of the cells at the level of the active metabolic network. This is unlike several other high-throughput experimental techniques, which do not provide information about the integrated response a specific genetic modification has on the cellular function. In this study we have performed phenotypic characterization of several mutants of the yeast Saccharomyces cerevisiae through the use of experiments with (13)C-labelled glucose. Through GC-MS analysis of the (13)C incorporated into the amino acids of cellular proteins, it was possible to obtain quantitative information on the function of the central carbon metabolism in the different mutants. Traditionally, such labelling data have been used to quantify metabolic fluxes through the use of a suitable mathematical model, but here we show that the raw labelling data may also be used directly for phenotypic characterization of different mutant strains. Different glucose derepressed strains investigated employed are the disruption mutants reg1, hxk2, grr1, mig1 and mig1mig2 and the reference strain CEN.PK113-7D. Principal components analysis of the summed fractional labelling data show that deleting the genes HXK2 and GRR1 results in similar phenotype at the fluxome level, with a partial alleviation of glucose repression on the respiratory metabolism. Furthermore, deletion of the genes MIG1, MIG1/MIG2 and REG1 did not result in a significant change in the phenotype at the fluxome level.[1]


  1. Phenotypic characterization of glucose repression mutants of Saccharomyces cerevisiae using experiments with 13C-labelled glucose. Raghevendran, V., Gombert, A.K., Christensen, B., Kötter, P., Nielsen, J. Yeast (2004) [Pubmed]
WikiGenes - Universities