The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Bis-histidyl hexacoordination in hemoglobins facilitates heme reduction kinetics.

Hexacoordinate hemoglobins are a class of proteins that exhibit reversible bis-histidyl coordination of the heme iron while retaining the ability to bind exogenous ligands. One hypothesis for their physiological function is that they scavenge nitric oxide, a reaction that oxidizes the protein and requires reduction of the heme iron to continue. Reduction kinetics of hexacoordinate hemoglobins, including human neuroglobin and cytoglobin, and those from Synechocystis and rice, are compared to myoglobin, soybean leghemoglobin, and several relevant mutant proteins. In all cases, bis-histidyl coordination greatly increases the rate of reduction by sodium dithionite when compared to pentacoordinate hemoglobins. In myoglobin and leghemoglobin, reduction is limited by the rate constant for electron transfer, whereas in the hexacoordinate hemoglobins reduction is limited only by bimolecular binding of the reductant. These results can be explained by differences in the reorganization energy for reduction between hexacoordinate and pentacoordinate hemoglobins.[1]

References

  1. Bis-histidyl hexacoordination in hemoglobins facilitates heme reduction kinetics. Weiland, T.R., Kundu, S., Trent, J.T., Hoy, J.A., Hargrove, M.S. J. Am. Chem. Soc. (2004) [Pubmed]
 
WikiGenes - Universities