Enhanced biocompatibility in biostable poly(carbonate)urethane.
In this work, we synthesized two MDI-based polyurethanes, including a poly(ether)urethane (PEU) and a poly(carbonate)urethane (PCU), by using different soft segments, poly(tetramethylene oxide) and poly(hexyl, ethyl)carbonate diol (M approximately 2,000). We demonstrated that, in addition to the enhanced biostability of PCU over PEU, the biological performances of PCU in vitro were also improved in general. These included, better cellular attachment and proliferation, less platelet activation, as well as reduced monocyte activation. The unusual wide-ranging enhancement in biocompatibility for PCU was believed to be related to the larger micro-phase separation in PCU (approximately 25 nm) that caused distinct protein adsorption on the surface.The total number of adherent monocytes (nonactivated and activated) on the bare sample surfaces, albumin pre-adsorbed sample surfaces, and fibrinogen pre-adsorbed sample surfaces.[1]References
- Enhanced biocompatibility in biostable poly(carbonate)urethane. Hsu, S.H., Kao, Y.C., Lin, Z.C. Macromolecular bioscience. (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg