The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Discovery of potent pyrrolidone-based HIV-1 protease inhibitors with enhanced drug-like properties.

We have developed efficient syntheses of the HIV-1 protease inhibitor 4 and its analogues, which incorporate the pyrrolidone scaffold 2 as P1-P2 moiety. Evaluation of these analogues in the HIV-1 protease enzyme assay resulted in discovery of potent and more water soluble meta-amino- and meta-hydroxy inhibitors 17b and 19b. The SAR observed in this class of PIs could be rationalized with aid of the X-ray structure of inhibitor 28 co-crystallized with the HIV-1 protease, which suggested that the polar meta- (but not para-) benzyl substituents in P2 could side-step the hydrophobic S2 enzyme active pocket by rotating the P2 moiety around its Cbeta-Cgamma bond. Such reorientation allows to engage the unsubstituted, hydrophobic edge of benzyl moiety in P2 in the requisite P2/S2 hydrophobic interaction, and projects polar meta-substituent into the bound water. It appears that the meta-position can be chemically derivatized without potency loss of thus resulting inhibitors, as evidenced by potent 22-26. We thus identified pyrrolidone 2-based inhibitors exemplified by 17b and 19b, which uniquely accommodate both high enzyme potency and which provide a platform for fine-tuning of drug-like properties in this class of PIs by additional chemical manipulations on the meta-position.[1]

References

  1. Discovery of potent pyrrolidone-based HIV-1 protease inhibitors with enhanced drug-like properties. Kazmierski, W.M., Andrews, W., Furfine, E., Spaltenstein, A., Wright, L. Bioorg. Med. Chem. Lett. (2004) [Pubmed]
 
WikiGenes - Universities