The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Inheritance of lysosomal acid beta-galactosidase activity and gangliosides in crosses of DBA/2J and knockout mice.

GM1 gangliosidosis is a progressive neurodegenerative disease caused by deficiencies in lysosomal acid beta-galactosidase (beta-gal) and involves accumulation and storage of ganglioside GM1 and its asialo form (GA1) in brain and visceral tissues. Similar to the infantile/juvenile human disease forms, B6/129Sv beta-gal knockout (ko) mice express residual tissue beta-gal activity and significant elevations of brain GM1, GA1, and total gangliosides. Previous studies suggested that inbred DBA/2J (D2) mice may model a mild form of the human disease since total brain ganglioside and GM1 concentration is higher while beta-gal specific activity is lower (by 70-80%) in D2 mice than in inbred C57BL/6J (B6) mice and other mouse strains. A developmental genetic analysis was conducted to determine if the genes encoding beta-gal ( Bgl) in the D2 and the ko mice were functionally allelic and if the reduced brain beta-gal activity in D2 mice could account for elevations in total brain gangliosides and GM1. Crosses were made between D2 mice homozygous for the Bgld allele (d/d), and either B6/129Sv mice heterozygous for the Bgl+ allele (+/-) or homozygous for the ko Bgl- allele (-/-) to generate d/+ and d/- mice. Specific beta-gal activity (nmol/ mg protein/h) showed additive inheritance in brain, liver, and kidney at juvenile (21 days) and adult (255 days) ages with the d/- mice having only about 16% of the beta-gal activity as that in the +/+ mice. These results indicate that the Bgl genes in the D2 and the ko mice are noncomplementing functional alleles. However, the d/- mice did not express GA1 and had total brain ganglioside and GM1 concentrations similar to those in the d/+ and +/+ mice. These results suggest that the reduced brain beta-gal activity alone cannot account for the elevation of total brain gangliosides and GM1 in the D2 mice.[1]

References

  1. Inheritance of lysosomal acid beta-galactosidase activity and gangliosides in crosses of DBA/2J and knockout mice. Hauser, E.C., Kasperzyk, J.L., d'Azzo, A., Seyfried, T.N. Biochem. Genet. (2004) [Pubmed]
 
WikiGenes - Universities