The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

AC1O5HKQ     (2S,4S,5R,6R)-5-acetamido-6- [3-[(2R,3R,4R...

Synonyms: Ganglioside GM1 (VAN), Monosialogangloside GM1
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Monosialosyl tetraglycosyl ceramide

  • Recognition of the oligosaccharide portion of ganglioside GM1 in membranes of target cells by the heat-labile enterotoxin from Escherichia coli is the crucial first step in its pathogenesis, as it is for the closely related cholera toxin [1].
  • Vibrio cholerae, the agent of epidemic and endemic cholera, colonizes the small bowel and secretes a potent enterotoxin that consists of a single A subunit, which stimulates adenylate cyclase activity, and five identical B subunits which bind to the ganglioside GM1 receptor of intestinal mucosal cells [2].
  • The use of the microspheres is demonstrated with a separation involving C-1300 neuroblastoma cells, 10% of which express the ganglioside GM1 in their membranes [3].
  • For this purpose we cross-linked glycosyl-phosphatidylinositol (GPI)-anchored proteins placental alkaline phosphatase (PLAP), Thy-1, influenza virus hemagglutinin (HA), and the raft lipid ganglioside GM1 using antibodies and/or cholera toxin [4].
  • Carbohydrate mimicry between human ganglioside GM1 and Campylobacter jejuni lipooligosaccharide causes Guillain-Barre syndrome [5].
 

Psychiatry related information on Monosialosyl tetraglycosyl ceramide

 

High impact information on Monosialosyl tetraglycosyl ceramide

 

Chemical compound and disease context of Monosialosyl tetraglycosyl ceramide

 

Biological context of Monosialosyl tetraglycosyl ceramide

 

Anatomical context of Monosialosyl tetraglycosyl ceramide

  • It has previously been shown that the B subunit of cholera toxin, which binds solely to the plasma membrane ganglioside GM1, stimulates the proliferation of rat thymic lymphocytes (Spiegel, S., P. H. Fishman, and R. J. Weber, 1985, Science [Wash. DC], 230:1285-1287) [23].
  • Disruption of the Raftlin gene in the DT40 B-cell line resulted in a marked reduction in the quantity of lipid raft components, including Lyn and ganglioside GM1, while overexpression of Raftlin increased the content of raft protein [24].
  • In the present study we show that ganglioside GM1 does not directly activate this pathway in PC12 cells [25].
  • Choleragen (cholera toxin) agglutinated erythrocytes and liposomes containing the toxin receptor, galactosyl-N-acetylgalactosaminyl-(N-acetylneuraminyl)-galactosylglucosylceramide (ganglioside GM1) [26].
  • Ganglioside GM1 was isolated from the small intestinal mucosa of man, pig, and beef and amounted to 0.1, 2.0, and 43 nmol per g fresh weight, respectively [27].
 

Associations of Monosialosyl tetraglycosyl ceramide with other chemical compounds

 

Gene context of Monosialosyl tetraglycosyl ceramide

 

Analytical, diagnostic and therapeutic context of Monosialosyl tetraglycosyl ceramide

References

  1. Lactose binding to heat-labile enterotoxin revealed by X-ray crystallography. Sixma, T.K., Pronk, S.E., Kalk, K.H., van Zanten, B.A., Berghuis, A.M., Hol, W.G. Nature (1992) [Pubmed]
  2. Recombinant nontoxinogenic Vibrio cholerae strains as attenuated cholera vaccine candidates. Kaper, J.B., Lockman, H., Baldini, M.M., Levine, M.M. Nature (1984) [Pubmed]
  3. Magnetic microspheres prepared by redox polymerization used in a cell separation based on gangliosides. Kronick, P.L., Campbell, G.L., Joseph, K. Science (1978) [Pubmed]
  4. Lipid domain structure of the plasma membrane revealed by patching of membrane components. Harder, T., Scheiffele, P., Verkade, P., Simons, K. J. Cell Biol. (1998) [Pubmed]
  5. Carbohydrate mimicry between human ganglioside GM1 and Campylobacter jejuni lipooligosaccharide causes Guillain-Barre syndrome. Yuki, N., Susuki, K., Koga, M., Nishimoto, Y., Odaka, M., Hirata, K., Taguchi, K., Miyatake, T., Furukawa, K., Kobata, T., Yamada, M. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  6. A double-blind, placebo-controlled crossover study of ganglioside GM1 treatment for Alzheimer's disease. Flicker, C., Ferris, S.H., Kalkstein, D., Serby, M. The American journal of psychiatry. (1994) [Pubmed]
  7. Ganglioside GM1 attenuates scopolamine-induced amnesia in rats and mice. Silva, R.H., Felicio, L.F., Frussa-Filho, R. Psychopharmacology (Berl.) (1999) [Pubmed]
  8. Ligand-induced redistribution of lymphocyte membrane ganglioside GM1. Révész, T., Greaves, M. Nature (1975) [Pubmed]
  9. Separation of caveolae from associated microdomains of GPI-anchored proteins. Schnitzer, J.E., McIntosh, D.P., Dvorak, A.M., Liu, J., Oh, P. Science (1995) [Pubmed]
  10. Cell surface organization of stress-inducible proteins ULBP and MICA that stimulate human NK cells and T cells via NKG2D. Eleme, K., Taner, S.B., Onfelt, B., Collinson, L.M., McCann, F.E., Chalupny, N.J., Cosman, D., Hopkins, C., Magee, A.I., Davis, D.M. J. Exp. Med. (2004) [Pubmed]
  11. Surface cytotoxic T lymphocyte-associated antigen 4 partitions within lipid rafts and relocates to the immunological synapse under conditions of inhibition of T cell activation. Darlington, P.J., Baroja, M.L., Chau, T.A., Siu, E., Ling, V., Carreno, B.M., Madrenas, J. J. Exp. Med. (2002) [Pubmed]
  12. Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. Frey, A., Giannasca, K.T., Weltzin, R., Giannasca, P.J., Reggio, H., Lencer, W.I., Neutra, M.R. J. Exp. Med. (1996) [Pubmed]
  13. Metastatic potential of mouse Lewis lung cancer cells is regulated via ganglioside GM1 by modulating the matrix metalloprotease-9 localization in lipid rafts. Zhang, Q., Furukawa, K., Chen, H.H., Sakakibara, T., Urano, T., Furukawa, K. J. Biol. Chem. (2006) [Pubmed]
  14. The effect of cycloheximide and ganglioside GM1 on the viability of retinotectally projecting ganglion cells following ablation of the superior colliculus in neonatal rats. Harvey, A.R., Cui, Q., Robertson, D. Eur. J. Neurosci. (1994) [Pubmed]
  15. Systemic treatment with GM1 ganglioside improves survival and function of cryopreserved embryonic midbrain grafted to the 6-hydroxydopamine-lesioned rat striatum. Sautter, J., Höglinger, G.U., Oertel, W.H., Earl, C.D. Exp. Neurol. (2000) [Pubmed]
  16. Characterization of 2,4,5-trihydroxyphenylalanine neurotoxicity in vitro and protective effects of ganglioside GM1: implications for Parkinson's disease. Skaper, S.D., Facci, L., Schiavo, N., Vantini, G., Moroni, F., Dal Toso, R., Leon, A. J. Pharmacol. Exp. Ther. (1992) [Pubmed]
  17. Involvement of the C-terminal tail of Arthrobacter ureafaciens sialidase isoenzyme M in cleavage of the internal sialic acid of ganglioside GM1. Iwamori, M., Kaido, T., Iwamori, Y., Ohta, Y., Tsukamoto, K., Kozaki, S. J. Biochem. (2005) [Pubmed]
  18. Ganglioside GM3: an acidic membrane component that increases during macrophage-like cell differentiation can induce monocytic differentiation of human myeloid and monocytoid leukemic cell lines HL-60 and U937. Nojiri, H., Takaku, F., Terui, Y., Miura, Y., Saito, M. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  19. Lipid raft-associated protein sorting in exosomes. de Gassart, A., Geminard, C., Fevrier, B., Raposo, G., Vidal, M. Blood (2003) [Pubmed]
  20. Structural similarities between ganglioside GM1 and antigens of the P2 phenotype. Meyer, M.A., Poduslo, J.F., Kurland, L.T. Ann. Neurol. (1989) [Pubmed]
  21. Degradation of membrane-bound ganglioside GM1. Stimulation by bis(monoacylglycero)phosphate and the activator proteins SAP-B and GM2-AP. Wilkening, G., Linke, T., Uhlhorn-Dierks, G., Sandhoff, K. J. Biol. Chem. (2000) [Pubmed]
  22. Interleukin 3-dependent mouse mast cells express the cholera toxin-binding acidic glycosphingolipid, ganglioside GM1, and increase their histamine content in response to toxin. Katz, H.R., Levine, J.S., Austen, K.F. J. Immunol. (1987) [Pubmed]
  23. Transmembrane signaling by the B subunit of cholera toxin: increased cytoplasmic free calcium in rat lymphocytes. Dixon, S.J., Stewart, D., Grinstein, S., Spiegel, S. J. Cell Biol. (1987) [Pubmed]
  24. The B cell-specific major raft protein, Raftlin, is necessary for the integrity of lipid raft and BCR signal transduction. Saeki, K., Miura, Y., Aki, D., Kurosaki, T., Yoshimura, A. EMBO J. (2003) [Pubmed]
  25. Ganglioside modulation of neural cell adhesion molecule and N-cadherin-dependent neurite outgrowth. Doherty, P., Ashton, S.V., Skaper, S.D., Leon, A., Walsh, F.S. J. Cell Biol. (1992) [Pubmed]
  26. Choleragen (cholera toxin): a bacterial lectin. Richards, R.L., Moss, J., Alving, C.R., Fishman, P.H., Brady, R.O. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  27. Interaction of cholera toxin and membrane GM1 ganglioside of small intestine. Holmgren, J., Lönnroth, I., Månsson, J., Svennerholm, L. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  28. The effect of apical and basolateral lipids on the function of the band 3 anion exchange protein. van't Hof, W., Malik, A., Vijayakumar, S., Qiao, J., van Adelsberg, J., Al-Awqati, Q. J. Cell Biol. (1997) [Pubmed]
  29. Membrane cholesterol regulates LFA-1 function and lipid raft heterogeneity. Marwali, M.R., Rey-Ladino, J., Dreolini, L., Shaw, D., Takei, F. Blood (2003) [Pubmed]
  30. gp120-mediated induction of the MAPK cascade is dependent on the activation state of CD4(+) lymphocytes. Kinet, S., Bernard, F., Mongellaz, C., Perreau, M., Goldman, F.D., Taylor, N. Blood (2002) [Pubmed]
  31. Glycolipids of murine lymphocyte subpopulations: a defect in the levels of sialidase-sensitive sialosylated asialo GM1 in beige mouse lymphocytes. Schwarting, G.A., Gajewski, A. J. Immunol. (1981) [Pubmed]
  32. Markers for detergent-resistant lipid rafts occupy distinct and dynamic domains in native membranes. Wilson, B.S., Steinberg, S.L., Liederman, K., Pfeiffer, J.R., Surviladze, Z., Zhang, J., Samelson, L.E., Yang, L.H., Kotula, P.G., Oliver, J.M. Mol. Biol. Cell (2004) [Pubmed]
  33. Polyunsaturated fatty acids inhibit T cell signal transduction by modification of detergent-insoluble membrane domains. Stulnig, T.M., Berger, M., Sigmund, T., Raederstorff, D., Stockinger, H., Waldhäusl, W. J. Cell Biol. (1998) [Pubmed]
  34. Localization of cystic fibrosis transmembrane conductance regulator to lipid rafts of epithelial cells is required for Pseudomonas aeruginosa-induced cellular activation. Kowalski, M.P., Pier, G.B. J. Immunol. (2004) [Pubmed]
  35. Human immunodeficiency virus type 1 uses lipid raft-colocalized CD4 and chemokine receptors for productive entry into CD4(+) T cells. Popik, W., Alce, T.M., Au, W.C. J. Virol. (2002) [Pubmed]
  36. Hedgehog interacting protein in the mature brain: membrane-associated and soluble forms. Coulombe, J., Traiffort, E., Loulier, K., Faure, H., Ruat, M. Mol. Cell. Neurosci. (2004) [Pubmed]
  37. Engagement of CD99 triggers the exocytic transport of ganglioside GM1 and the reorganization of actin cytoskeleton. Yoon, S.S., Jung, K.I., Choi, Y.L., Choi, E.Y., Lee, I.S., Park, S.H., Kim, T.J. FEBS Lett. (2003) [Pubmed]
  38. Identification of the neurotrophic factor sequence of prosaposin. O'Brien, J.S., Carson, G.S., Seo, H.C., Hiraiwa, M., Weiler, S., Tomich, J.M., Barranger, J.A., Kahn, M., Azuma, N., Kishimoto, Y. FASEB J. (1995) [Pubmed]
  39. Anti-ganglioside GM1 antibodies in Guillain-Barré syndrome and their relationship to Campylobacter jejuni infection. Rees, J.H., Gregson, N.A., Hughes, R.A. Ann. Neurol. (1995) [Pubmed]
  40. Sequestration of epidermal growth factor receptors in non-caveolar lipid rafts inhibits ligand binding. Roepstorff, K., Thomsen, P., Sandvig, K., van Deurs, B. J. Biol. Chem. (2002) [Pubmed]
  41. Mast cell heterogeneity. Differential synthesis and expression of glycosphingolipids by mouse serosal mast cells as compared to IL-3-dependent bone marrow culture-derived mast cells before or after coculture with 3T3 fibroblasts. Raizman, M.B., Austen, K.F., Katz, H.R. J. Immunol. (1990) [Pubmed]
 
WikiGenes - Universities