The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Nuclear localization destabilizes the stress-regulated transcription factor Msn2.

The transcriptional program of yeast cells undergoes dramatic changes during the shift from fermentative growth to respiratory growth. A large part of this response is mediated by the stress responsive transcription factor Msn2. During glucose exhaustion, Msn2 is activated and concentrated in the nucleus. Simultaneously, Msn2 protein levels also drop significantly under this condition. Here we show that the decrease in Msn2 concentration is due to its increased degradation. Moreover, Msn2 levels are also reduced under chronic stress or low protein kinase A (PKA) activity, both conditions that cause a predominant nuclear localization of Msn2. Similar effects were found in msn5 mutant cells that block Msn2 nuclear export. To approximate the effect of low PKA activity on Msn2, we generated a mutant form with alanine substitutions in PKA phosphorylation sites. High expression of this Msn2 mutant is detrimental for growth, suggesting that the increased degradation of nuclear Msn2 might be necessary to adapt cells to low PKA conditions after the diauxic shift or to allow growth under chronic stress conditions.[1]

References

  1. Nuclear localization destabilizes the stress-regulated transcription factor Msn2. Durchschlag, E., Reiter, W., Ammerer, G., Schüller, C. J. Biol. Chem. (2004) [Pubmed]
 
WikiGenes - Universities