The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Dopamine receptor signaling.

The D1-like (D1, D5) and D2-like (D2, D3, D4) classes of dopamine receptors each has shared signaling properties that contribute to the definition of the receptor class, although some differences among subtypes within a class have been identified. D1-like receptor signaling is mediated chiefly by the heterotrimeric G proteins Galphas and Galphaolf, which cause sequential activation of adenylate cyclase, cylic AMP-dependent protein kinase, and the protein phosphatase-1 inhibitor DARPP-32. The increased phosphorylation that results from the combined effects of activating cyclic AMP-dependent protein kinase and inhibiting protein phosphatase 1 regulates the activity of many receptors, enzymes, ion channels, and transcription factors. D1 or a novel D1-like receptor also signals via phospholipase C-dependent and cyclic AMP-independent mobilization of intracellular calcium. D2-like receptor signaling is mediated by the heterotrimeric G proteins Galphai and Galphao. These pertussis toxin-sensitive G proteins regulate some effectors, such as adenylate cyclase, via their Galpha subunits, but regulate many more effectors such as ion channels, phospholipases, protein kinases, and receptor tyrosine kinases as a result of the receptor-induced liberation of Gbetagamma subunits. In addition to interactions between dopamine receptors and G proteins, other protein:protein interactions such as receptor oligomerization or receptor interactions with scaffolding and signal-switching proteins are critical for regulation of dopamine receptor signaling.[1]


  1. Dopamine receptor signaling. Neve, K.A., Seamans, J.K., Trantham-Davidson, H. J. Recept. Signal Transduct. Res. (2004) [Pubmed]
WikiGenes - Universities