The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Tropomodulin binding to tropomyosins. Isoform-specific differences in affinity and stoichiometry.

Tropomodulin is a human erythrocyte membrane cytoskeletal protein that binds to one end of tropomyosin molecules and inhibits tropomyosin binding to actin filaments [Fowler, V. M. (1990) J. Cell Biol. 111, 471-482]. We have characterized the interaction of erythroid and non-erythroid tropomyosins with tropomodulin by non-denaturing gel electrophoresis and by solid-phase binding assays using 125I-tropomyosin. Non-denaturing gel analysis demonstrates that all tropomodulin molecules are able to bind tropomyosin and that tropomodulin forms complexes with tropomyosin isoforms from erythrocyte, brain, platelet and skeletal muscle tissue. Scatchard analysis of binding data using tropomyosin isoforms from these tissues indicate that tropomodulin binds preferentially to erythrocyte tropomyosin. Specificity is manifested by decreases in the apparent affinity or the saturation binding capacity of tropomodulin for non-erythrocyte tropomyosins. Erythrocyte tropomyosin saturates tropomodulin at approximate stoichiometric ratios of 1:2 and 1:4 tropomyosin/tropomodulin (apparent Kd = 14 nM-1 and 5 nM-1, respectively). Brain tropomyosin saturates tropomodulin at a 1:2 ratio of tropomyosin/tropomodulin, but with a threefold lower affinity than erythrocyte tropomyosin. Platelet tropomyosin saturates tropomodulin at a tropomyosin/tropomodulin ratio of 1:4, but with a sevenfold lower affinity than erythrocyte tropomyosin at the 1:4 ratio. These results correlate with oxidative cross-linking data which indicate that tropomodulin can self-associate to form dimers and tetramers in solution. Since tropomodulin interacts with one of the ends of tropomyosin, varying interactions of tropomyosin isoforms with tropomodulin probably reflect the heterogeneity in N-terminal or C-terminal sequences characteristic of the different tropomyosin isoforms. Isoform-specific interactions of tropomodulin with tropomyosins may represent a novel mechanism for selective regulation of tropomyosin/actin interactions.[1]

References

 
WikiGenes - Universities