The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Human THAP7 is a chromatin-associated, histone tail-binding protein that represses transcription via recruitment of HDAC3 and nuclear hormone receptor corepressor.

The identities of signal transducer proteins that integrate histone hypoacetylation and transcriptional repression are largely unknown. Here we demonstrate that THAP7, an uncharacterized member of the recently identified THAP (Thanatos-associated protein) family of proteins, is ubiquitously expressed, associates with chromatin, and represses transcription. THAP7 binds preferentially to hypoacetylated (un-, mono-, and diacetylated) histone H4 tails in vitro via its C-terminal 77 amino acids. Deletion of this domain, or treatment of cells with the histone deacetylase inhibitor TSA, which leads to histone hyperacetylation, partially disrupts THAP7/chromatin association in living cells. THAP7 coimmunoprecipitates with histone deacetylase 3 (HDAC3) and the nuclear hormone receptor corepressor (NCoR) and represses transcription as a Gal4 fusion protein. Chromatin immunoprecipitation assays demonstrate that these corepressors are recruited to promoters in a THAP7 dependent manner and promote histone H3 hypoacetylation. The conserved THAP domain is a key determinant for full HDAC3 association in vitro, and both the THAP domain and the histone interaction domain are important for the repressive properties of THAP7. Full repression mediated by THAP7 is also dependent on NCoR expression. We hypothesize that THAP7 is a dual function repressor protein that actively targets deacetylation of histone H3 necessary to establish transcriptional repression and functions as a signal transducer of the repressive mark of hypoacetylated histone H4. This is the first demonstration of the transcriptional regulatory properties of a human THAP domain protein, and a critical identification of a potential transducer of the repressive signal of hypoacetylated histone H4 in higher eukaryotes.[1]

References

 
WikiGenes - Universities