The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

E4F1, a novel estrogen-responsive gene in possible atheroprotection, revealed by microarray analysis.

Estrogen has been postulated to be involved in inhibition of vascular smooth muscle cell (VSMC) proliferation mainly via estrogen receptor (ER), but the detailed mechanism has remained primarily unknown. Therefore, in this study, microarray analysis was used in two types of cultured human VSMCs: one positive for ER alpha, and the other for ER beta, which were treated by estrogens to detect the estrogen-responsive genes. We also used quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) to evaluate mRNA levels of selective target gene (TG) in these cells. We further studied whether the TG product was involved in inhibition of proliferation using small interfering RNA (siRNA) of the TG transfection. We subsequently used quantitative RT-PCR and in situ hybridization analysis to evaluate the expression of these gene products in human aorta. E4F1, a possible inducer of cell growth arrest, was markedly increased only in ER alpha-positive VSMCs by estrogens in both microarray and RT-PCR analyses. Blocking of E4F1 using siRNA suppressed estrogenic inhibition of ER alpha-positive VSMC proliferation. E4F1 mRNA was abundant in premenopausal female aorta with mild atherosclerotic changes. E4F1 is therefore considered one of the estrogen-responsive genes involving ER alpha-mediated inhibition of VSMC proliferation and may play an important role in estrogen-related atheroprotection of human aorta.[1]


  1. E4F1, a novel estrogen-responsive gene in possible atheroprotection, revealed by microarray analysis. Nakamura, Y., Igarashi, K., Suzuki, T., Kanno, J., Inoue, T., Tazawa, C., Saruta, M., Ando, T., Moriyama, N., Furukawa, T., Ono, M., Moriya, T., Ito, K., Saito, H., Ishibashi, T., Takahashi, S., Yamada, S., Sasano, H. Am. J. Pathol. (2004) [Pubmed]
WikiGenes - Universities