The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The cryopreservation of human embryonic stem cells.

hES (human embryonic stem) cells hold tremendous potential in the newly emerging field of regenerative medicine, in addition to being a useful tool in basic scientific research and for pharmacological and cytotoxicity screening. However, an essential prerequisite for the future widespread application of hES cells are the development of efficient cryopreservation protocols to facilitate their storage and transportation. This review summarizes the current state of progress in the field of hES cell cryopreservation, by critically examining and comparing the various cryopreservation protocols that have been developed. These can be classified into two categories: (1) conventional slow-cooling protocols and (2) vitrification protocols. Previously, the application of slow-cooling cryopreservation protocols to freely-suspended hES cell clumps yielded extremely dismal results. However, a recent study demonstrated that post-thaw survivability was markedly improved when slow-cooling protocols were applied instead to adherent hES colonies. Vitrification protocols have been shown to be much better than the standard slow-cooling protocol for the cryopreservation of freely suspended hES cell clumps. However, no study has yet attempted to apply vitrification protocols to adherent hES colonies. It must be noted that vitrification protocols are extremely labour-intensive and tedious to perform manually. Additionally, the use of cryostraws in vitrification protocols is unsuited for handling bulk quantities of hES cells, in addition to posing serious technical difficulties in developing machine automation for cryopreservation. These are some of the major challenges that have to be overcome if further progress is to be made in this field.[1]


  1. The cryopreservation of human embryonic stem cells. Heng, B.C., Kuleshova, L.L., Bested, S.M., Liu, H., Cao, T. Biotechnol. Appl. Biochem. (2005) [Pubmed]
WikiGenes - Universities