The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Ion soft-landing into liquids: Protein identification, separation, and purification with retention of biological activity.

Protein ions, after mass spectrometric separation, can be soft-landed into liquid surfaces with preservation of their native structures. Retention of biological activity is strongly favored in glycerol-based surfaces but not in self-assembled monolayer solid surfaces. Soft-landing efficiency for multiply-charged hexokinase ions was found to be some four times higher for a glycerol/fructose liquid surface than for a fluorinated self-assembled monolayer surface. Soft-landing into liquid surfaces is also shown to allow (1) protein purification, (2) on-surface identification of the soft-landed material using MALDI, and (3) protein identification by in-surface tryptic digestion. Pure lysozyme was successfully isolated from different mixtures including an oxidized, partially decomposed batch of the protein and a partial tryptic digest. Liquid glycerol/carbohydrate mixtures could be used directly to record MALDI spectra on the soft-landed compounds provided they were fortified in advance with traditional MALDI matrices such as p-nitroaniline and alpha-cyano-4-hydroxycinnamic acid. Various proteins were soft-landed and detected on-target using these types of liquid surface. Soft-landing of multiply-charged lysozyme ions onto fluorinated self-assembled monolayer surfaces was found to occur with a limited amount of neutralization, and trapped multiply-charged ions could be desorbed from the surface by laser desorption. Initial data is shown for a new approach to protein identification that combines top-down and bottom-up approaches by utilizing protein ion soft-landing from a protein mixture, followed by tryptic digestion of the landed material and detection of characteristic tryptic fragments by MALDI.[1]

References

  1. Ion soft-landing into liquids: Protein identification, separation, and purification with retention of biological activity. Gologan, B., Takáts, Z., Alvarez, J., Wiseman, J.M., Talaty, N., Ouyang, Z., Cooks, R.G. J. Am. Soc. Mass Spectrom. (2004) [Pubmed]
 
WikiGenes - Universities