The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Furucton     (3S,4R,5R)-1,3,4,5,6- pentahydroxyhexan-2-one

Synonyms: Nevulose, Methose, DL-Fructose, Hi-Fructo 970, D(-)-Fructose, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of fructose

  • When more stringent restriction of dietary fructose was instituted (approximately 40 mg per kilogram of body weight per day), growth velocity increased from the 25th to the 97th percentile in one child and from well below the 3d to above the 75th percentile in the other [1].
  • When restriction of dietary fructose was experimentally relaxed (from 10 to 250 mg per kilogram per day), neither boy had symptoms, hypoglycemia, or evidence of hepatic or renal dysfunction, but both had sustained hyperuricemia and hyperuricosuria and increases in the plasma concentration and urinary excretion of magnesium [1].
  • Hereditary fructose intolerance (HFI) is a human autosomal recessive disease caused by a deficiency of aldolase B that results in an inability to metabolize fructose and related sugars [2].
  • Nerve glucose, fructose, sorbitol, myo-inositol, and fiber degeneration and regeneration in diabetic neuropathy [3].
  • Intravenous infusions of manose or B-hydroxybutyrate, metabolic fuels which can be oxidized by brain, abolished adrenal discharge of epinephrine in rats during insulin-induced hypoglycemia, whereas infusion of fructose, a sugar which does not cross the blood-brain barrier, did not [4].
 

Psychiatry related information on fructose

 

High impact information on fructose

  • On repeat biopsy, six diabetics, treated for a year with the aldose reductase inhibitor sorbinil, had decreased endoneurial levels of sorbitol (P less than 0.01) and fructose (0.05 less than P less than 0.1), but unchanged levels of myo-inositol [3].
  • Catalytic deficiency of human aldolase B in hereditary fructose intolerance caused by a common missense mutation [2].
  • Pseudodominant transmission of fructose intolerance in an adult and three offspring: Heterozygote detection by intestinal biopsy [10].
  • In the reverse reaction, the kinetics of wild-type and the Ser 72 mutant with respect to fructose 1,6-bisphosphate are hyperbolic, whereas those of the Ser 162 and Ser 243 mutants are sigmoidal [11].
  • Arginines 162 and 243 reach into the active site from an adjacent subunit and interact with the cooperative substrate fructose 6-phosphate [11].
 

Chemical compound and disease context of fructose

 

Biological context of fructose

 

Anatomical context of fructose

  • ATP was depleted either in primary hepatocytes or in vivo by various phosphate-trapping carbohydrates such as fructose [18].
  • Using a cDNA probe complementary to rat aldolase B mRNA, we determined the amount of cytoplasmic RNAs in the liver, kidney, and small intestine of normal, adrenalectomized, thyroidectomized, diabetic, and glucagon- or cAMP-treated animals refed either a fructose-rich or a maltose-rich diet [22].
  • In the cecum, areas under the concentration curves decreased from day 1 to day 8 for lactulose, galactose, and fructose (P less than 0.01), while an increase was found for lactic acid (P less than 0.001), acetic acid (P less than 0.0001), and total VFA (P less than 0.001) [23].
  • The addition of MIF to differentiated L6 rat myotubes increased synthesis of fructose 2,6-bisphosphate (F2,6BP), a positive allosteric regulator of glycolysis [24].
  • BACKGROUND: The exact roles of disaccharidases and GLUT5 in the brush border membrane and GLUT2 in the basolateral membrane in the absorption of fructose across the intestine have not been fully determined [25].
 

Associations of fructose with other chemical compounds

 

Gene context of fructose

  • Genetic analysis showed that only in strains lacking both hexokinases (hxk1 hxk2) was the low Km system for fructose absent [31].
  • The rbcL-rbcS transcript is equally abundant in Anabaena azollae grown in the light or on fructose in the dark [32].
  • The results indicate that hxk1 or hxk2 single null mutants can ferment fructose but that hxk1 hxk2 double mutants cannot [33].
  • In addition, the growth properties of snf3 mutants suggested that they were defective in uptake of glucose and fructose [34].
  • At higher glucose concentrations or in the presence of low concentrations of fructose, GK translocated to the cytoplasm [35].
 

Analytical, diagnostic and therapeutic context of fructose

References

  1. Chronic fructose intoxication after infancy in children with hereditary fructose intolerance. A cause of growth retardation. Mock, D.M., Perman, J.A., Thaler, M., Morris, R.C. N. Engl. J. Med. (1983) [Pubmed]
  2. Catalytic deficiency of human aldolase B in hereditary fructose intolerance caused by a common missense mutation. Cross, N.C., Tolan, D.R., Cox, T.M. Cell (1988) [Pubmed]
  3. Nerve glucose, fructose, sorbitol, myo-inositol, and fiber degeneration and regeneration in diabetic neuropathy. Dyck, P.J., Zimmerman, B.R., Vilen, T.H., Minnerath, S.R., Karnes, J.L., Yao, J.K., Poduslo, J.F. N. Engl. J. Med. (1988) [Pubmed]
  4. Homeostasis during hypoglycemia: central control of adrenal secretion and peripheral control of feeding. Stricker, E.M., Rowland, N., Saller, C.F., Friedman, M.I. Science (1977) [Pubmed]
  5. Dietary sugar, glycemic load, and pancreatic cancer risk in a prospective study. Michaud, D.S., Liu, S., Giovannucci, E., Willett, W.C., Colditz, G.A., Fuchs, C.S. J. Natl. Cancer Inst. (2002) [Pubmed]
  6. Site-directed mutagenesis of rabbit muscle phosphofructokinase cDNA. Mutations at glutamine 200 affect the allosteric properties of the enzyme. Li, J., Zhu, X., Byrnes, M., Nelson, J.W., Chang, S.H. J. Biol. Chem. (1993) [Pubmed]
  7. Acid-base catalytic mechanism and pH dependence of fructose 2,6-bisphosphate activation of the Ascaris suum phosphofructokinase. Payne, M.A., Rao, G.S., Harris, B.G., Cook, P.F. Biochemistry (1995) [Pubmed]
  8. Chronic fluoxetine administration desensitizes the hyperglycemia but not the anorexia induced by serotonin in rats receiving fructose-enriched chow. Hsiao, S.H., Chung, H.H., Tong, Y.C., Cheng, J.T. Neurosci. Lett. (2006) [Pubmed]
  9. Malabsorption of carbohydrates and depression in children and adolescents. Varea, V., de Carpi, J.M., Puig, C., Alda, J.A., Camacho, E., Ormazabal, A., Artuch, R., Gómez, L. J. Pediatr. Gastroenterol. Nutr. (2005) [Pubmed]
  10. Pseudodominant transmission of fructose intolerance in an adult and three offspring: Heterozygote detection by intestinal biopsy. Cox, T.M., Camilleri, M., O'Donnell, M.W., Chadwick, V.S. N. Engl. J. Med. (1982) [Pubmed]
  11. Active-site mutants altering the cooperativity of E. coli phosphofructokinase. Berger, S.A., Evans, P.R. Nature (1990) [Pubmed]
  12. Regulation of biliary cholesterol secretion. Functional relationship between the canalicular and sinusoidal cholesterol secretory pathways in the rat. Nervi, F., Marinović, I., Rigotti, A., Ulloa, N. J. Clin. Invest. (1988) [Pubmed]
  13. Basis for the control of purine biosynthesis by purine ribonucleotides. Itakura, M., Sabina, R.L., Heald, P.W., Holmes, E.W. J. Clin. Invest. (1981) [Pubmed]
  14. The prevalence and causes of chronic diarrhea in patients with celiac sprue treated with a gluten-free diet. Fine, K.D., Meyer, R.L., Lee, E.L. Gastroenterology (1997) [Pubmed]
  15. The genetic consequences of our sweet tooth. Cox, T.M. Nat. Rev. Genet. (2002) [Pubmed]
  16. The role of phosphoenolpyruvate in the simultaneous uptake of fructose and 2-deoxyglucose by Escherichia coli. Kornberg, H., Lambourne, L.T. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  17. Metabolic effects of dietary fructose and sucrose in types I and II diabetic subjects. Bantle, J.P., Laine, D.C., Thomas, J.W. JAMA (1986) [Pubmed]
  18. Metabolic depletion of ATP by fructose inversely controls CD95- and tumor necrosis factor receptor 1-mediated hepatic apoptosis. Latta, M., Künstle, G., Leist, M., Wendel, A. J. Exp. Med. (2000) [Pubmed]
  19. 2-Deoxyglucose selectively inhibits Fc and complement receptor-mediated phagocytosis in mouse peritoneal macrophages. I. Description of the inhibitory effect. Michl, J., Ohlbaum, D.J., Silverstein, S.C. J. Exp. Med. (1976) [Pubmed]
  20. Defective fatty acid uptake modulates insulin responsiveness and metabolic responses to diet in CD36-null mice. Hajri, T., Han, X.X., Bonen, A., Abumrad, N.A. J. Clin. Invest. (2002) [Pubmed]
  21. Injury of neoplastic cells by murine macrophages leads to inhibition of mitochondrial respiration. Granger, D.L., Taintor, R.R., Cook, J.L., Hibbs, J.B. J. Clin. Invest. (1980) [Pubmed]
  22. Dietary and hormonal regulation of aldolase B gene expression. Munnich, A., Besmond, C., Darquy, S., Reach, G., Vaulont, S., Dreyfus, J.C., Kahn, A. J. Clin. Invest. (1985) [Pubmed]
  23. Influence of chronic lactulose ingestion on the colonic metabolism of lactulose in man (an in vivo study). Florent, C., Flourie, B., Leblond, A., Rautureau, M., Bernier, J.J., Rambaud, J.C. J. Clin. Invest. (1985) [Pubmed]
  24. The proinflammatory mediator macrophage migration inhibitory factor induces glucose catabolism in muscle. Benigni, F., Atsumi, T., Calandra, T., Metz, C., Echtenacher, B., Peng, T., Bucala, R. J. Clin. Invest. (2000) [Pubmed]
  25. GLUT2 is the transporter for fructose across the rat intestinal basolateral membrane. Cheeseman, C.I. Gastroenterology (1993) [Pubmed]
  26. Energy metabolism and T-cell-mediated cytolysis. II. Selective inhibition of cytolysis by 2-deoxy-D-glucose. MacDonald, H.R. J. Exp. Med. (1977) [Pubmed]
  27. Differential effects of hyperinsulinemia and carbohydrate metabolism on sympathetic nerve activity and muscle blood flow in humans. Vollenweider, P., Tappy, L., Randin, D., Schneiter, P., Jéquier, E., Nicod, P., Scherrer, U. J. Clin. Invest. (1993) [Pubmed]
  28. Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes. Giardino, I., Edelstein, D., Brownlee, M. J. Clin. Invest. (1994) [Pubmed]
  29. Improvement of rat liver graft function by insulin administration to donor. Morimoto, Y., Kamiike, W., Nishida, T., Hatanaka, N., Shimizu, S., Huang, T.P., Hamada, E., Uchiyama, Y., Yoshida, Y., Furuya, E., Matsuda, H. Gastroenterology (1996) [Pubmed]
  30. Role of acetaldehyde in the ethanol-induced impairment of glycoprotein metabolism in rat liver slices. Sorrell, M.F., Tuma, D.J., Schafer, E.C., Barak, A.J. Gastroenterology (1977) [Pubmed]
  31. Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae. Bisson, L.F., Fraenkel, D.G. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  32. Cotranscription of genes encoding the small and large subunits of ribulose-1,5-bisphosphate carboxylase in the cyanobacterium Anabaena 7120. Nierzwicki-Bauer, S.A., Curtis, S.E., Haselkorn, R. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  33. Effects of null mutations in the hexokinase genes of Saccharomyces cerevisiae on catabolite repression. Ma, H., Botstein, D. Mol. Cell. Biol. (1986) [Pubmed]
  34. Null mutations in the SNF3 gene of Saccharomyces cerevisiae cause a different phenotype than do previously isolated missense mutations. Neigeborn, L., Schwartzberg, P., Reid, R., Carlson, M. Mol. Cell. Biol. (1986) [Pubmed]
  35. Glucokinase regulatory protein may interact with glucokinase in the hepatocyte nucleus. Brown, K.S., Kalinowski, S.S., Megill, J.R., Durham, S.K., Mookhtiar, K.A. Diabetes (1997) [Pubmed]
  36. Evaluation of University of Wisconsin cold-storage solution in warm hypoxic perfusion of rat liver: the addition of fructose reduces injury. Brass, C.A., Crawford, J.M., Narciso, J.P., Gollan, J.L. Gastroenterology (1993) [Pubmed]
  37. Mitochondrial permeability transition in the switch from necrotic to apoptotic cell death in ischemic rat hepatocytes. Kim, J.S., Qian, T., Lemasters, J.J. Gastroenterology (2003) [Pubmed]
  38. An electron microscope study of the interaction between fructose diphosphate aldolase and actin-containing filaments. Morton, D.J., Clarke, F.M., Masters, C.J. J. Cell Biol. (1977) [Pubmed]
 
WikiGenes - Universities