The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress.

The biochemical basis of heat/drought tolerance was investigated by comparing the response of antisense and sense transgenic soybean plants (containing the L-delta1-pyrroline-5-carboxylate reductase gene) with non-transgenic wild-type plants. The plants were subjected to a simultaneous drought and heat stress of 2 days, whereafter they were rewatered at 25 degrees C. During this time the sense plants only showed mild symptoms of stress compared to the antisense plants which were severely stressed. Upon stress, nicotinamide adenine dinucleotide phosphate (NADP+) levels decreased in antisense while it increased in sense plants. Recovery with respect to NADP+ levels was best in sense plants. Sense plants had the highest ability to accumulate proline during stress and to metabolise proline after rewatering. Analyses of the fast phase chlorophyll-a fluorescence transients showed dissociation of the oxygen-evolving complex (OEC) upon stress in all plants tested. In the sense plants, which best resisted the stress, OEC dissociation was bypassed by proline feeding electrons into photosystem 2 (PSII), maintaining an acceptable nicotinamide adenine dinucleotide hydrogen phosphate (NADPH) level, preventing further damage. Upon recovery, NADPH is consumed during oxidation of accumulated proline providing high Levels of NADP+ to act as electron acceptor to PSII, which indirectly may ameliorate the inhibition and/or the effect of uncoupling of the OEC.[1]

References

  1. Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. De Ronde, J.A., Cress, W.A., Krüger, G.H., Strasser, R.J., Van Staden, J. J. Plant Physiol. (2004) [Pubmed]
 
WikiGenes - Universities