MeSH Review:
Heat Stress Disorders
- Specific induction of the 70-kD heat stress proteins by the tyrosine kinase inhibitor herbimycin-A protects rat neonatal cardiomyocytes. A new pharmacological route to stress protein expression? Morris, S.D., Cumming, D.V., Latchman, D.S., Yellon, D.M. J. Clin. Invest. (1996)
- Expression of inducible stress protein 70 in rat heart myogenic cells confers protection against simulated ischemia-induced injury. Mestril, R., Chi, S.H., Sayen, M.R., O'Reilly, K., Dillmann, W.H. J. Clin. Invest. (1994)
- Decreased expression of mouse Rbm3, a cold-shock protein, in Sertoli cells of cryptorchid testis. Danno, S., Itoh, K., Matsuda, T., Fujita, J. Am. J. Pathol. (2000)
- p53-dependent induction of WAF1 by heat treatment in human glioblastoma cells. Ohnishi, T., Wang, X., Ohnishi, K., Matsumoto, H., Takahashi, A. J. Biol. Chem. (1996)
- Increased platelet and red cell counts, blood viscosity, and plasma cholesterol levels during heat stress, and mortality from coronary and cerebral thrombosis. Keatinge, W.R., Coleshaw, S.R., Easton, J.C., Cotter, F., Mattock, M.B., Chelliah, R. Am. J. Med. (1986)
- The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Finley, D., Ozkaynak, E., Varshavsky, A. Cell (1987)
- Heat shock transcription factors: structure and regulation. Wu, C. Annu. Rev. Cell Dev. Biol. (1995)
- Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Westwood, J.T., Clos, J., Wu, C. Nature (1991)
- Prevention of protein denaturation under heat stress by the chaperonin Hsp60. Martin, J., Horwich, A.L., Hartl, F.U. Science (1992)
- In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Mishra, S.K., Tripp, J., Winkelhaus, S., Tschiersch, B., Theres, K., Nover, L., Scharf, K.D. Genes Dev. (2002)
- Glutathione depletion impairs transcriptional activation of heat shock genes in primary cultures of guinea pig gastric mucosal cells. Rokutan, K., Hirakawa, T., Teshima, S., Honda, S., Kishi, K. J. Clin. Invest. (1996)
- Myocardial protection after whole body heat stress in the rabbit is dependent on metabolic substrate and is related to the amount of the inducible 70-kD heat stress protein. Marber, M.S., Walker, J.M., Latchman, D.S., Yellon, D.M. J. Clin. Invest. (1994)
- Heat stress prevents impairment of bile acid transport in endotoxemic rats by a posttranscriptional mechanism. Bolder, U., Schmidt, A., Landmann, L., Kidder, V., Tange, S., Jauch, K.W. Gastroenterology (2002)
- In vivo gene transfection with heat shock protein 70 enhances myocardial tolerance to ischemia-reperfusion injury in rat. Suzuki, K., Sawa, Y., Kaneda, Y., Ichikawa, H., Shirakura, R., Matsuda, H. J. Clin. Invest. (1997)
- AppppA binds to several proteins in Escherichia coli, including the heat shock and oxidative stress proteins DnaK, GroEL, E89, C45 and C40. Johnstone, D.B., Farr, S.B. EMBO J. (1991)
- Genome-wide analysis of mRNA stability using transcription inhibitors and microarrays reveals posttranscriptional control of ribosome biogenesis factors. Grigull, J., Mnaimneh, S., Pootoolal, J., Robinson, M.D., Hughes, T.R. Mol. Cell. Biol. (2004)
- Activation of Fas inhibits heat-induced activation of HSF1 and up-regulation of hsp70. Schett, G., Steiner, C.W., Gröger, M., Winkler, S., Graninger, W., Smolen, J., Xu, Q., Steiner, G. FASEB J. (1999)
- Brave little yeast, please guide us to thebes: sphingolipid function in S. cerevisiae. Schneiter, R. Bioessays (1999)
- Mitochondrial heat shock protein 70, a molecular chaperone for proteins encoded by mitochondrial DNA. Herrmann, J.M., Stuart, R.A., Craig, E.A., Neupert, W. J. Cell Biol. (1994)
- Endogenous tumor necrosis factor as a predictor of doxorubicin sensitivity in leukemic patients. Kobayashi, D., Watanabe, N., Yamauchi, N., Tsuji, N., Sato, T., Niitsu, Y. Blood (1997)
- Hsp56: a novel heat shock protein associated with untransformed steroid receptor complexes. Sanchez, E.R. J. Biol. Chem. (1990)
- In vivo modifications of the maize mitochondrial small heat stress protein, HSP22. Lund, A.A., Rhoads, D.M., Lund, A.L., Cerny, R.L., Elthon, T.E. J. Biol. Chem. (2001)
- The molecular chaperone Hsp78 confers compartment-specific thermotolerance to mitochondria. Schmitt, M., Neupert, W., Langer, T. J. Cell Biol. (1996)
- A soybean 101-kD heat shock protein complements a yeast HSP104 deletion mutant in acquiring thermotolerance. Lee, Y.R., Nagao, R.T., Key, J.L. Plant Cell (1994)
- Proline isomerases function during heat shock. Sykes, K., Gething, M.J., Sambrook, J. Proc. Natl. Acad. Sci. U.S.A. (1993)
- Activation of the DNA-binding ability of human heat shock transcription factor 1 may involve the transition from an intramolecular to an intermolecular triple-stranded coiled-coil structure. Zuo, J., Baler, R., Dahl, G., Voellmy, R. Mol. Cell. Biol. (1994)
- Evidence for an interaction between ubiquitin-conjugating enzymes and the 26S proteasome. Tongaonkar, P., Chen, L., Lambertson, D., Ko, B., Madura, K. Mol. Cell. Biol. (2000)
- Late preconditioning against myocardial stunning. An endogenous protective mechanism that confers resistance to postischemic dysfunction 24 h after brief ischemia in conscious pigs. Sun, J.Z., Tang, X.L., Knowlton, A.A., Park, S.W., Qiu, Y., Bolli, R. J. Clin. Invest. (1995)
- Heat shock-induced protection of renal proximal tubular epithelial cells from cold storage and rewarming injury. Healy, D.A., Daly, P.J., Docherty, N.G., Murphy, M., Fitzpatrick, J.M., Watson, R.W. J. Am. Soc. Nephrol. (2006)
- Increased endogenous catalase activity caused by heat stress does not protect the isolated rat heart against exogenous hydrogen peroxide. Steare, S.E., Yellon, D.M. Cardiovasc. Res. (1994)
- Heat stress-induced resistance to myocardial infarction in the isolated heart from transgenic [(mREN-2)27] hypertensive rats. Joyeux, M., Lagneux, C., Bricca, G., Yellon, D.M., Demenge, P., Ribuot, C. Cardiovasc. Res. (1998)
- Conditioning heat stress reduces excitotoxic and apoptotic components of oxygen-glucose deprivation-induced neuronal death in vitro. Snider, B.J., Lobner, D., Yamada, K.A., Choi, D.W. J. Neurochem. (1998)