The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Actinomycin D induces histone gamma-H2AX foci and complex formation of gamma-H2AX with Ku70 and nuclear DNA helicase II.

Formation of gamma-H2AX foci is a P. O.cellular response to genotoxic stress, such as DNA double strand breaks or stalled replication forks. Here we show that gamma-H2AX foci were also formed when cells were incubated with 0.5 microg/ml DNA intercalating agent actinomycin D. In untreated cells, gamma-H2AX co-immunoprecipitated with Ku70, a subunit of DNA-dependent protein kinase, as well as with nuclear DNA helicase II (NDH II), a DEXH family helicase also known as RNA helicase A or DHX9. This association was increased manifold after actinomycin D treatment. DNA degradation diminished the amount of Ku70 associated with gamma-H2AX but not that of NDH II. In vitro binding studies with recombinant NDH II and H2AX phosphorylated by DNA-dependent protein kinase confirmed a direct physical interaction between NDH II and gamma-H2AX. Thereby, the NDH II DEXH domain alone, i.e. its catalytic core, was able to support binding to gamma-H2AX. Congruently, after actinomycin D treatment, NDH II accumulated in RNA-containing nuclear bodies that predominantly co-localized with gamma-H2AX foci. Taken together, these results suggest that histone gamma-H2AX promotes binding of NDH II to transcriptionally stalled sites on chromosomal DNA.[1]

References

 
WikiGenes - Universities