The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

2-iodomelatonin prevents apoptosis of cerebellar granule neurons via inhibition of A-type transient outward K+ currents.

Compelling evidence indicates that excessive K+ efflux and intracellular K+ depletion are key early steps in apoptosis. Previously, we reported that apoptosis of cerebellar granular neurons induced by incubation under low K+ (5 mM) conditions was associated with an increase in delayed rectifier outward K+ current (IK) amplitude and caspase-3 activity. Moreover, the melatonin receptor antagonist 4P-PDOT abrogated the effects of 2-iodomelatonin on IK augmentation, caspase-3 activity and apoptosis. Here, we show that incubation under low K+/serum-free conditions for 6 hr led to a dramatic increase in the A-type transient outward K+ current (IA) (a 27% increase; n=31); in addition, fluorescence staining showed that under these conditions, cell viability decreased by 30% compared with the control. Treatment with 2-iodomelatonin inhibited the IA amplitude recorded from control and apoptotic cells in a concentration-dependent manner and modified the IA channel activation kinetics of cells under control conditions. Moreover, 2-iodomelatonin increased the viability of cell undergoing apoptosis. Interestingly, 4P-PDOT did not abrogate the effect of 2-iodomelatonin on IA augmentation under these conditions; in the presence of 4P-PDOT (100 microm), 2-iodomelatonin reduced the average IA by 41+/-4%, which was similar to the effect of 2-iodomelatonin alone. These results suggest that the neuroprotective effects of 2-idomelatonin are not only because of its antioxidant or receptor-activating properties, but rather that 2-iodomelatonin may inhibit IA channels by acting as a channel blocker.[1]

References

 
WikiGenes - Universities