The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Coordination properties of Cu(II) and Ni(II) ions towards the C-terminal peptide fragment -ELAKHA- of histone H2B.

The coordination properties of the peptide Ac-GluLeuAlaLysHisAla-amide, the C-terminal 102-107 fragment of histone H2B towards Cu(II) and Ni(II) ions were studied by means of potentiometry and spectroscopic techniques (UV/Vis, CD, EPR and NMR). It was found that the peptide has a unique ability to bind Cu(II) ions at physiological pH values at a Cu(II): peptide molar ratio 1:2, which is really surprising for blocked hexapeptides containing one His residue above position 3. At physiological pH values the studied hexapeptide forms a CuL(2) complex {N(Im),2N(-)}, while in acidic and basic pH values the equimolar mode is preferred. In basic solutions Ac-GluLeuAlaLysHisAla-amide may bound through a {4N(-)} mode forming a square-planar complex, in which the imidazole ring is not any more coordinated or it has been removed in an axial position. On the contrary, Ni(II) ions form only equimolar complexes, starting from a distorted octahedral complex at about neutral pH values to a planar complex, where hexapeptide is bound through a {N(Im),3N(-)} mode in equatorial plane. The results may be of importance in order to reveal more information about the toxicity caused by metals and furthermore their influence to the physiologic metabolism of the cell.[1]


  1. Coordination properties of Cu(II) and Ni(II) ions towards the C-terminal peptide fragment -ELAKHA- of histone H2B. Karavelas, T., Mylonas, M., Malandrinos, G., Plakatouras, J.C., Hadjiliadis, N., Mlynarz, P., Kozlowski, H. J. Inorg. Biochem. (2005) [Pubmed]
WikiGenes - Universities