The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Carrier-independent nuclear import of the transcription factor PU.1 via RanGTP- stimulated binding to Nup153.

PU.1 is a transcription factor of the Ets family with important functions in hematopoietic cell differentiation. Using green fluorescent protein-PU.1 fusions, we show that the Ets DNA binding domain of PU.1 is necessary and sufficient for its nuclear localization. Fluorescence and ultrastructural nuclear import assays showed that PU.1 nuclear import requires energy but not soluble carriers. PU.1 interacted directly with two nucleoporins, Nup62 and Nup153. The binding of PU.1 to Nup153, but not to Nup62, increased dramatically in the presence of RanGMPPNP, indicating the formation of a PU.1.RanGTP.Nup153 complex. The Ets domain accounted for the bulk of the interaction of PU.1 with Nup153 and RanGMPPNP. Because Nup62 is located close to the midplane of the nuclear pore complex whereas Nup153 is at its nuclear side, these findings suggest a model whereby RanGTP propels PU.1 toward the nuclear side of the nuclear pore complex by increasing its affinity for Nup153. This notion was confirmed by ultrastructural studies using gold-labeled PU.1 in permeabilized cells.[1]

References

  1. Carrier-independent nuclear import of the transcription factor PU.1 via RanGTP-stimulated binding to Nup153. Zhong, H., Takeda, A., Nazari, R., Shio, H., Blobel, G., Yaseen, N.R. J. Biol. Chem. (2005) [Pubmed]
 
WikiGenes - Universities