The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

NCKAP1L  -  NCK-associated protein 1-like

Homo sapiens

Synonyms: HEM1, Hematopoietic protein 1, Membrane-associated protein HEM-1, Nck-associated protein 1-like
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of NCKAP1L


Psychiatry related information on NCKAP1L


High impact information on NCKAP1L


Chemical compound and disease context of NCKAP1L


Biological context of NCKAP1L


Anatomical context of NCKAP1L


Associations of NCKAP1L with chemical compounds


Physical interactions of NCKAP1L

  • Here we report the identification of E4F1, an inhibitor of cellular proliferation, as a novel BMI1-interacting partner in hematopoietic cells [31].
  • Our investigations shed new light on signaling pathways of CD34 by demonstrating that CD34 couples to the hematopoietic adapter protein CrkL [32].
  • Actually, the increased expression of bFGF and its receptors associated with the reduction of the TGF-beta binding receptor in CD34+ progenitors from MMM patients might facilitate the expansion of hematopoietic progenitors, not only by stimulating their growth and/or survival, but also by overcoming negative regulatory signals [33].
  • These findings indicate that activation of HPK1 and formation of HPK1/c-Abl complexes are functionally important in the stress response of hematopoietic cells to genotoxic agents [34].
  • SCF interacted with a number of hematopoietic growth factors to stimulate colony growth and was particularly effective in stimulating the formation of mixed-cell colonies from CD34+ soybean agglutinin negative (SBA-) cells [35].

Enzymatic interactions of NCKAP1L


Co-localisations of NCKAP1L


Regulatory relationships of NCKAP1L


Other interactions of NCKAP1L

  • To assess the role these genes may play in regulating the proliferation and/or differentiation of such cells, we engineered the overexpression of HOXB4 in murine bone marrow cells by retroviral gene transfer and analyzed subsequent effects on the behavior of various hematopoietic stem and progenitor cell populations both in vitro and in vivo [44].
  • We have cloned a novel protein kinase, termed hematopoietic progenitor kinase 1 (HPK1), that is expressed predominantly in hematopoietic cells, including early progenitor cells [45].
  • E4F1: a novel candidate factor for mediating BMI1 function in primitive hematopoietic cells [31].
  • We have recently shown that certain members of the Hox A and B clusters, such as HOXB3 and HOXB4, are preferentially expressed in subpopulations of human bone marrow that are highly enriched for the most primitive hematopoietic cell types [44].
  • The chemokine transporter function of CXCR4 was a characteristic of endothelial and stromal cells but not of hematopoietic cells [46].

Analytical, diagnostic and therapeutic context of NCKAP1L

  • The SCID-hu mouse is a heterochimeric small animal model designed to support hematopoietic differentiation and function in vivo [47].
  • But in recent clinical trials of high-dose therapy with autologous hematopoietic stem cell transplant, complete remission rates of 25-30% can be affected with median survival exceeding 5 years [48].
  • The risk was also increased if the recipient was HLA homozygous at the mismatched class I locus or if the donor had two or more class I mismatches CONCLUSIONS: HLA class I antigen mismatches that are serologically detectable confer an enhanced risk of graft failure after hematopoietic-cell transplantation [49].
  • A small number of peripheral-blood CD34+ cells, when grown ex vivo, can supply a population of hematopoietic precursors that have the ability to restore blood formation in patients treated with high doses of chemotherapy [21].
  • Other differences were also observed, especially with regard to hematopoietic recovery (it occurred later after autologous transplantation) and the duration of hospitalization (it was longer with bone marrow transplantation) [50].


  1. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Kondo, M., Wagers, A.J., Manz, M.G., Prohaska, S.S., Scherer, D.C., Beilhack, G.F., Shizuru, J.A., Weissman, I.L. Annu. Rev. Immunol. (2003) [Pubmed]
  2. The Wiskott-Aldrich syndrome protein (WASP): roles in signaling and cytoskeletal organization. Snapper, S.B., Rosen, F.S. Annu. Rev. Immunol. (1999) [Pubmed]
  3. The multiple roles of osteoclasts in host defense: bone remodeling and hematopoietic stem cell mobilization. Kollet, O., Dar, A., Lapidot, T. Annu. Rev. Immunol. (2007) [Pubmed]
  4. Effect of granulocyte colony-stimulating factor on neutropenia and associated morbidity due to chemotherapy for transitional-cell carcinoma of the urothelium. Gabrilove, J.L., Jakubowski, A., Scher, H., Sternberg, C., Wong, G., Grous, J., Yagoda, A., Fain, K., Moore, M.A., Clarkson, B. N. Engl. J. Med. (1988) [Pubmed]
  5. Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers. Bensinger, W.I., Martin, P.J., Storer, B., Clift, R., Forman, S.J., Negrin, R., Kashyap, A., Flowers, M.E., Lilleby, K., Chauncey, T.R., Storb, R., Appelbaum, F.R. N. Engl. J. Med. (2001) [Pubmed]
  6. Vibrio vulnificus. Man and the sea. Johnston, J.M., Becker, S.F., McFarland, L.M. JAMA (1985) [Pubmed]
  7. Consecutive appearance of coagulation factor XIII subunit A in macrophages, megakaryocytes, and liver cells during early human development. Kappelmayer, J., Bacskó, G., Birinyi, L., Zákány, R., Kelemen, E., Adány, R. Blood (1995) [Pubmed]
  8. Proteasome activity restricts lentiviral gene transfer into hematopoietic stem cells and is down-regulated by cytokines that enhance transduction. Santoni de Sio, F.R., Cascio, P., Zingale, A., Gasparini, M., Naldini, L. Blood (2006) [Pubmed]
  9. Astrocytic alterations in interleukin-6/Soluble interleukin-6 receptor alpha double-transgenic mice. Brunello, A.G., Weissenberger, J., Kappeler, A., Vallan, C., Peters, M., Rose-John, S., Weis, J. Am. J. Pathol. (2000) [Pubmed]
  10. Decreased circulating CD34(+) stem cells in early Alzheimer's disease: evidence for a deficient hematopoietic brain support? Maler, J.M., Spitzer, P., Lewczuk, P., Kornhuber, J., Herrmann, M., Wiltfang, J. Mol. Psychiatry (2006) [Pubmed]
  11. Zoned out: functional mapping of stromal signaling microenvironments in the thymus. Petrie, H.T., Zúñiga-Pflücker, J.C. Annu. Rev. Immunol. (2007) [Pubmed]
  12. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Liu, Y.J. Annu. Rev. Immunol. (2005) [Pubmed]
  13. Suppression of thyrotropin in the low-thyroxine state of severe nonthyroidal illness. Wehmann, R.E., Gregerman, R.I., Burns, W.H., Saral, R., Santos, G.W. N. Engl. J. Med. (1985) [Pubmed]
  14. A requirement for NF-kappaB activation in Bcr-Abl-mediated transformation. Reuther, J.Y., Reuther, G.W., Cortez, D., Pendergast, A.M., Baldwin, A.S. Genes Dev. (1998) [Pubmed]
  15. Interferon-alpha restores normal adhesion of chronic myelogenous leukemia hematopoietic progenitors to bone marrow stroma by correcting impaired beta 1 integrin receptor function. Bhatia, R., Wayner, E.A., McGlave, P.B., Verfaillie, C.M. J. Clin. Invest. (1994) [Pubmed]
  16. Radiopharmaceutical therapy of 5T33 murine myeloma by sequential treatment with samarium-153 ethylenediaminetetramethylene phosphonate, melphalan, and bone marrow transplantation. Turner, J.H., Claringbold, P.G., Manning, L.S., O'Donoghue, H.L., Berger, J.D., Glancy, R.J. J. Natl. Cancer Inst. (1993) [Pubmed]
  17. Ground-glass, polyglucosan-like hepatocellular inclusions: a "new" diagnostic entity. Lefkowitch, J.H., Lobritto, S.J., Brown, R.S., Emond, J.C., Schilsky, M.L., Rosenthal, L.A., George, D.M., Cairo, M.S. Gastroenterology (2006) [Pubmed]
  18. Hem-1, a potential membrane protein, with expression restricted to blood cells. Hromas, R., Collins, S., Raskind, W., Deaven, L., Kaushansky, K. Biochim. Biophys. Acta (1991) [Pubmed]
  19. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Okuda, T., van Deursen, J., Hiebert, S.W., Grosveld, G., Downing, J.R. Cell (1996) [Pubmed]
  20. A Hopscotch-chromatin connection. Betz, A., Darnell, J.E. Nat. Genet. (2006) [Pubmed]
  21. Reconstitution of hematopoiesis after high-dose chemotherapy by autologous progenitor cells generated ex vivo. Brugger, W., Heimfeld, S., Berenson, R.J., Mertelsmann, R., Kanz, L. N. Engl. J. Med. (1995) [Pubmed]
  22. Germline KRAS mutations cause Noonan syndrome. Schubbert, S., Zenker, M., Rowe, S.L., Böll, S., Klein, C., Bollag, G., van der Burgt, I., Musante, L., Kalscheuer, V., Wehner, L.E., Nguyen, H., West, B., Zhang, K.Y., Sistermans, E., Rauch, A., Niemeyer, C.M., Shannon, K., Kratz, C.P. Nat. Genet. (2006) [Pubmed]
  23. p62(dok): a constitutively tyrosine-phosphorylated, GAP-associated protein in chronic myelogenous leukemia progenitor cells. Carpino, N., Wisniewski, D., Strife, A., Marshak, D., Kobayashi, R., Stillman, B., Clarkson, B. Cell (1997) [Pubmed]
  24. Deficiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Takeda, J., Miyata, T., Kawagoe, K., Iida, Y., Endo, Y., Fujita, T., Takahashi, M., Kitani, T., Kinoshita, T. Cell (1993) [Pubmed]
  25. Hematopoietic stem-cell transplants using umbilical-cord blood. Gluckman, E. N. Engl. J. Med. (2001) [Pubmed]
  26. Further evidence that "malignant angioendotheliomatosis" is an angiotropic large-cell lymphoma. Sheibani, K., Battifora, H., Winberg, C.D., Burke, J.S., Ben-Ezra, J., Ellinger, G.M., Quigley, N.J., Fernandez, B.B., Morrow, D., Rappaport, H. N. Engl. J. Med. (1986) [Pubmed]
  27. The complex cartography of stem cell commitment. Akashi, K., Traver, D., Zon, L.I. Cell (2005) [Pubmed]
  28. Reconstitution in severe combined immunodeficiency by transplantation of marrow from an unrelated donor. O'Reilly, R.J., Dupont, B., Pahwa, S., Grimes, E., Smithwick, E.M., Pahwa, R., Schwartz, S., Hansen, J.A., Siegal, F.P., Sorell, M., Svejgaard, A., Jersild, C., Thomsen, M., Platz, P., L'Esperance, P., Good, R.A. N. Engl. J. Med. (1977) [Pubmed]
  29. Mortality among workers exposed to ethylene oxide. Steenland, K., Stayner, L., Greife, A., Halperin, W., Hayes, R., Hornung, R., Nowlin, S. N. Engl. J. Med. (1991) [Pubmed]
  30. Hematopoietic stem-cell transplantation in globoid-cell leukodystrophy. Krivit, W., Shapiro, E.G., Peters, C., Wagner, J.E., Cornu, G., Kurtzberg, J., Wenger, D.A., Kolodny, E.H., Vanier, M.T., Loes, D.J., Dusenbery, K., Lockman, L.A. N. Engl. J. Med. (1998) [Pubmed]
  31. E4F1: a novel candidate factor for mediating BMI1 function in primitive hematopoietic cells. Chagraoui, J., Niessen, S.L., Lessard, J., Girard, S., Coulombe, P., Sauvageau, M., Meloche, S., Sauvageau, G. Genes Dev. (2006) [Pubmed]
  32. The adapter protein CrkL associates with CD34. Felschow, D.M., McVeigh, M.L., Hoehn, G.T., Civin, C.I., Fackler, M.J. Blood (2001) [Pubmed]
  33. Differential expression of transforming growth factor-beta, basic fibroblast growth factor, and their receptors in CD34+ hematopoietic progenitor cells from patients with myelofibrosis and myeloid metaplasia. Le Bousse-Kerdilès, M.C., Chevillard, S., Charpentier, A., Romquin, N., Clay, D., Smadja-Joffe, F., Praloran, V., Dupriez, B., Demory, J.L., Jasmin, C., Martyré, M.C. Blood (1996) [Pubmed]
  34. Interaction of hematopoietic progenitor kinase 1 and c-Abl tyrosine kinase in response to genotoxic stress. Ito, Y., Pandey, P., Sathyanarayana, P., Ling, P., Rana, A., Weichselbaum, R., Tan, T.H., Kufe, D., Kharbanda, S. J. Biol. Chem. (2001) [Pubmed]
  35. Long-term generation of colony-forming cells in liquid culture of CD34+ cord blood cells in the presence of recombinant human stem cell factor. Migliaccio, G., Migliaccio, A.R., Druzin, M.L., Giardina, P.J., Zsebo, K.M., Adamson, J.W. Blood (1992) [Pubmed]
  36. Thrombin activation of human platelets causes tyrosine phosphorylation of PLC-gamma 2. Tate, B.F., Rittenhouse, S.E. Biochim. Biophys. Acta (1993) [Pubmed]
  37. hSiah2 is a new Vav binding protein which inhibits Vav-mediated signaling pathways. Germani, A., Romero, F., Houlard, M., Camonis, J., Gisselbrecht, S., Fischer, S., Varin-Blank, N. Mol. Cell. Biol. (1999) [Pubmed]
  38. Efficient retrovirus-mediated transfer of the multidrug resistance 1 gene into autologous human long-term repopulating hematopoietic stem cells. Abonour, R., Williams, D.A., Einhorn, L., Hall, K.M., Chen, J., Coffman, J., Traycoff, C.M., Bank, A., Kato, I., Ward, M., Williams, S.D., Hromas, R., Robertson, M.J., Smith, F.O., Woo, D., Mills, B., Srour, E.F., Cornetta, K. Nat. Med. (2000) [Pubmed]
  39. Natural killer (NK) cell-derived hematopoietic colony-inhibiting activity and NK cytotoxic factor. Relationship with tumor necrosis factor and synergism with immune interferon. Degliantoni, G., Murphy, M., Kobayashi, M., Francis, M.K., Perussia, B., Trinchieri, G. J. Exp. Med. (1985) [Pubmed]
  40. Constitutive activation of STAT5A promotes human hematopoietic stem cell self-renewal and erythroid differentiation. Schuringa, J.J., Chung, K.Y., Morrone, G., Moore, M.A. J. Exp. Med. (2004) [Pubmed]
  41. Identification of a polymorphic gene, BCL2A1, encoding two novel hematopoietic lineage-specific minor histocompatibility antigens. Akatsuka, Y., Nishida, T., Kondo, E., Miyazaki, M., Taji, H., Iida, H., Tsujimura, K., Yazaki, M., Naoe, T., Morishima, Y., Kodera, Y., Kuzushima, K., Takahashi, T. J. Exp. Med. (2003) [Pubmed]
  42. Tumor necrosis factor-alpha inhibits stem cell factor-induced proliferation of human bone marrow progenitor cells in vitro. Role of p55 and p75 tumor necrosis factor receptors. Rusten, L.S., Smeland, E.B., Jacobsen, F.W., Lien, E., Lesslauer, W., Loetscher, H., Dubois, C.M., Jacobsen, S.E. J. Clin. Invest. (1994) [Pubmed]
  43. Lymphotoxin beta receptor signaling induces the chemokine CCL20 in intestinal epithelium. Rumbo, M., Sierro, F., Debard, N., Kraehenbuhl, J.P., Finke, D. Gastroenterology (2004) [Pubmed]
  44. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Sauvageau, G., Thorsteinsdottir, U., Eaves, C.J., Lawrence, H.J., Largman, C., Lansdorp, P.M., Humphries, R.K. Genes Dev. (1995) [Pubmed]
  45. Human HPK1, a novel human hematopoietic progenitor kinase that activates the JNK/SAPK kinase cascade. Hu, M.C., Qiu, W.R., Wang, X., Meyer, C.F., Tan, T.H. Genes Dev. (1996) [Pubmed]
  46. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Dar, A., Goichberg, P., Shinder, V., Kalinkovich, A., Kollet, O., Netzer, N., Margalit, R., Zsak, M., Nagler, A., Hardan, I., Resnick, I., Rot, A., Lapidot, T. Nat. Immunol. (2005) [Pubmed]
  47. The SCID-hu mouse: a small animal model for HIV infection and pathogenesis. McCune, J., Kaneshima, H., Krowka, J., Namikawa, R., Outzen, H., Peault, B., Rabin, L., Shih, C.C., Yee, E., Lieberman, M. Annu. Rev. Immunol. (1991) [Pubmed]
  48. Multiple myeloma: what's new. Durie, B.G. CA: a cancer journal for clinicians. (2001) [Pubmed]
  49. Major-histocompatibility-complex class I alleles and antigens in hematopoietic-cell transplantation. Petersdorf, E.W., Hansen, J.A., Martin, P.J., Woolfrey, A., Malkki, M., Gooley, T., Storer, B., Mickelson, E., Smith, A., Anasetti, C. N. Engl. J. Med. (2001) [Pubmed]
  50. Autologous or allogeneic bone marrow transplantation compared with intensive chemotherapy in acute myelogenous leukemia. European Organization for Research and Treatment of Cancer (EORTC) and the Gruppo Italiano Malattie Ematologiche Maligne dell'Adulto (GIMEMA) Leukemia Cooperative Groups. Zittoun, R.A., Mandelli, F., Willemze, R., de Witte, T., Labar, B., Resegotti, L., Leoni, F., Damasio, E., Visani, G., Papa, G. N. Engl. J. Med. (1995) [Pubmed]
WikiGenes - Universities