SOCS-3 induces myoblast differentiation.
Myoblast differentiation is characterized by a sequence of events that includes an increase in insulin-like growth factor (IGF)-I and contractile gene expression. The increase in IGF-I expression activates cell signaling mechanisms that participate in the differentiation process. One potential contributor is the SOCS-3 (suppressor of cytokine signaling-3) gene, which regulates signaling mechanisms and may be sensitive to changes in IGF-I concentrations. For the first time, the role of SOCS-3 is investigated in myoblast differentiation. SOCS-3 mRNA levels and SOCS-3 transcriptional activity increase during myoblast differentiation. SOCS-3 gene expression is induced, at least in part, by activation of the IGF-I receptor during myoblast differentiation. Overexpression of SOCS-3 cDNA significantly increased transcriptional activation of the 2.0-kb skeletal alpha-actin promoter in differentiating C2C12 myoblasts. In addition, overexpression of SOCS-3 specifically increased serum response factor-driven transcriptional activity but had no effect on nuclear-factor of activated T cell-driven transcriptional activity. SOCS-3 overexpression induced skeletal alpha-actin transcription in a myoblast cell line that cannot respond to endogenous IGF-I, indicating that SOCS-3 can contribute to the myoblast differentiation process in the absence of IGF-I. These data suggest that IGF-I induces myoblast differentiation, in part, by increasing SOCS-3 expression.[1]References
- SOCS-3 induces myoblast differentiation. Spangenburg, E.E. J. Biol. Chem. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg