The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

ACTA1  -  actin, alpha 1, skeletal muscle

Homo sapiens

Synonyms: ACTA, ASMA, Actin, alpha skeletal muscle, Alpha-actin-1, CFTD, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of ACTA1


Psychiatry related information on ACTA1

  • We have used a factor analysis of the Stiles-Burch [Opt. Acta 6, 1 (1959)] 10 degrees field color matches to examine the basis of individual differences in the color matches made by observers with normal color vision [7].
  • When the expression of these isozymes in control brains was compared with that in Alzheimer's disease brains staged according to Braak and Braak (Acta Neuropathol. (Berl.) 82 (1991), 239), we found that PDE8B was the only isozyme showing a significant increase, in cortical areas and parts of the hippocampal formation, at Braak stages III-VI [8].
  • The highest ASMA scores and lowest levels of RPI were found in heroin users [9].
  • Reaction time (RT) to abrupt-onset stimuli has been widely used for more than a century to measure the duration of perceptuo-cognitive and motor processes [Donders, 1868/1969 Attention and Performance II (1969 Acta Psychologica 30 412-431)] [10].
  • This paper summarizes the clinical and genetic features of a disease occurring in 16 patients from the same extended family, which resembles the multi-infarct dementia described by Sourander and Wålinder [Acta neuropath. 39: 247-254, 1977] [11].

High impact information on ACTA1


Chemical compound and disease context of ACTA1


Biological context of ACTA1

  • The marked variability, in clinical phenotype, among patients with different mutations in ACTA1 suggests that both the site of the mutation and the nature of the amino acid change have differential effects on thin-filament formation and protein-protein interactions [20].
  • Most pathogenic ACTA1 mutations were missense changes with two instances of single base pair deletions [4].
  • This cohort also includes the first instance of an ACTA1 mutation manifesting with adult-onset disease and two pedigrees exhibiting potential incomplete penetrance [4].
  • Assignment of the human skeletal muscle [FC12]a-actin gene (ACTA1) to chromosome 1q42.13-->q42.2 by radiation hybrid mapping [21].
  • Analysis of the DNA sequences of the 5' end of the clones demonstrated that although beta- and gamma-actin genes start with a methionine codon (MET-Asp-Asp-Asp and MET-Glu-Glu-Glu, respectively), the alpha-actin gene starts with a methionine codon followed by a cysteine codon (MET-CYS-Asp-Glu-Asp-Glu) [22].

Anatomical context of ACTA1


Associations of ACTA1 with chemical compounds


Physical interactions of ACTA1

  • Resolution of the approximately 1.0 microm polarized alpha-actin/nebulin/tropomyosin/troponin thin filament complexes occurred subsequent to the maturation of Z-bands into a dense tetragonal configuration [29].
  • However, under these conditions profilin formed a stable stoichiometric complex with skeletal muscle alpha-actin, as verified by its ability to increase the critical concentration of actin polymerization [30].
  • Thus, muscle-specific regulation of the human skeletal alpha-actin gene appears to require interactions between the other elements of the composite DRE enhancer with the protein:DNA complex formed by DRF-2 [31].
  • Activation of the human cardiac alpha-actin (HCA) promoter in skeletal muscle cells requires the integrity of DNA binding sites for the serum response factor (SRF), Sp1, and the myogenic basic helix-loop-helix (bHLH) family [32].
  • Positively acting, rate-limiting regulatory factors that influence tissue-specific expression of the human cardiac alpha-actin gene in a mouse muscle cell line are shown by in vivo competition and gel mobility-shift assays to bind to upstream regions of its promoter but to neither vector DNA nor a beta-globin promoter [33].

Regulatory relationships of ACTA1


Other interactions of ACTA1


Analytical, diagnostic and therapeutic context of ACTA1


  1. Mutations in the skeletal muscle alpha-actin gene in patients with actin myopathy and nemaline myopathy. Nowak, K.J., Wattanasirichaigoon, D., Goebel, H.H., Wilce, M., Pelin, K., Donner, K., Jacob, R.L., Hübner, C., Oexle, K., Anderson, J.R., Verity, C.M., North, K.N., Iannaccone, S.T., Müller, C.R., Nürnberg, P., Muntoni, F., Sewry, C., Hughes, I., Sutphen, R., Lacson, A.G., Swoboda, K.J., Vigneron, J., Wallgren-Pettersson, C., Beggs, A.H., Laing, N.G. Nat. Genet. (1999) [Pubmed]
  2. Evidence for a dominant-negative effect in ACTA1 nemaline myopathy caused by abnormal folding, aggregation and altered polymerization of mutant actin isoforms. Ilkovski, B., Nowak, K.J., Domazetovska, A., Maxwell, A.L., Clement, S., Davies, K.E., Laing, N.G., North, K.N., Cooper, S.T. Hum. Mol. Genet. (2004) [Pubmed]
  3. Actin mutations are one cause of congenital fibre type disproportion. Laing, N.G., Clarke, N.F., Dye, D.E., Liyanage, K., Walker, K.R., Kobayashi, Y., Shimakawa, S., Hagiwara, T., Ouvrier, R., Sparrow, J.C., Nishino, I., North, K.N., Nonaka, I. Ann. Neurol. (2004) [Pubmed]
  4. Heterogeneity of nemaline myopathy cases with skeletal muscle alpha-actin gene mutations. Agrawal, P.B., Strickland, C.D., Midgett, C., Morales, A., Newburger, D.E., Poulos, M.A., Tomczak, K.K., Ryan, M.M., Iannaccone, S.T., Crawford, T.O., Laing, N.G., Beggs, A.H. Ann. Neurol. (2004) [Pubmed]
  5. Direct effects of leptin on size and extracellular matrix components of human pediatric ventricular myocytes. Madani, S., De Girolamo, S., Muñoz, D.M., Li, R.K., Sweeney, G. Cardiovasc. Res. (2006) [Pubmed]
  6. The pathogenesis of ACTA1-related congenital fiber type disproportion. Clarke, N.F., Ilkovski, B., Cooper, S., Valova, V.A., Robinson, P.J., Nonaka, I., Feng, J.J., Marston, S., North, K. Ann. Neurol. (2007) [Pubmed]
  7. Factors underlying individual differences in the color matches of normal observers. Webster, M.A., MacLeod, D.I. Journal of the Optical Society of America. A, Optics and image science. (1988) [Pubmed]
  8. Alterations on phosphodiesterase type 7 and 8 isozyme mRNA expression in Alzheimer's disease brains examined by in situ hybridization. Pérez-Torres, S., Cortés, R., Tolnay, M., Probst, A., Palacios, J.M., Mengod, G. Exp. Neurol. (2003) [Pubmed]
  9. Further validation and development of a screening instrument for the assessment of substance misuse in adolescents. Willner, P. Addiction (2000) [Pubmed]
  10. Response inhibition can affect reaction time to abrupt-onset visual displays. Gellatly, A., Cole, G., Fox, C., Johnson, M. Perception. (2003) [Pubmed]
  11. Hereditary multi-infarct dementia. Sonninen, V., Savontaus, M.L. Eur. Neurol. (1987) [Pubmed]
  12. Neointimal and tubulointerstitial infiltration by recipient mesenchymal cells in chronic renal-allograft rejection. Grimm, P.C., Nickerson, P., Jeffery, J., Savani, R.C., Gough, J., McKenna, R.M., Stern, E., Rush, D.N. N. Engl. J. Med. (2001) [Pubmed]
  13. Identification and characterization of multiple forms of actin. Garrels, J.I., Gibson, W. Cell (1976) [Pubmed]
  14. Computerized axial tomography in syringomyelia. DiChiro, G., Axelbaum, S.P., Schellinger, D., Twigg, H.L., Ledley, R.S. N. Engl. J. Med. (1975) [Pubmed]
  15. Severe nemaline myopathy caused by mutations of the stop codon of the skeletal muscle alpha actin gene (ACTA1). Wallefeld, W., Krause, S., Nowak, K.J., Dye, D., Horváth, R., Molnár, Z., Szabó, M., Hashimoto, K., Reina, C., Carlos, J.D., Rosell, J., Cabello, A., Navarro, C., Nishino, I., Lochmüller, H., Laing, N.G. Neuromuscul. Disord. (2006) [Pubmed]
  16. Congenital nemaline myopathy due to ACTA1-gene mutation and carnitine insufficiency: a case report. Buxmann, H., Schlösser, R., Schlote, W., Sewell, A., Nowak, K.J., Laing, N.G., Loewenich, V. Neuropediatrics. (2001) [Pubmed]
  17. Transforming growth factor-beta induces airway smooth muscle hypertrophy. Goldsmith, A.M., Bentley, J.K., Zhou, L., Jia, Y., Bitar, K.N., Fingar, D.C., Hershenson, M.B. Am. J. Respir. Cell Mol. Biol. (2006) [Pubmed]
  18. Genotype-phenotype correlations in nemaline myopathy caused by mutations in the genes for nebulin and skeletal muscle alpha-actin. Wallgren-Pettersson, C., Pelin, K., Nowak, K.J., Muntoni, F., Romero, N.B., Goebel, H.H., North, K.N., Beggs, A.H., Laing, N.G. Neuromuscul. Disord. (2004) [Pubmed]
  19. Adrenergic regulation of the skeletal alpha-actin gene promoter during myocardial cell hypertrophy. Bishopric, N.H., Kedes, L. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  20. Nemaline myopathy caused by mutations in the muscle alpha-skeletal-actin gene. Ilkovski, B., Cooper, S.T., Nowak, K., Ryan, M.M., Yang, N., Schnell, C., Durling, H.J., Roddick, L.G., Wilkinson, I., Kornberg, A.J., Collins, K.J., Wallace, G., Gunning, P., Hardeman, E.C., Laing, N.G., North, K.N. Am. J. Hum. Genet. (2001) [Pubmed]
  21. Assignment of the human skeletal muscle [FC12]a-actin gene (ACTA1) to chromosome 1q42.13-->q42.2 by radiation hybrid mapping. Mogensen, J., Kruse, T.A., Børglum, A.D. Cytogenet. Cell Genet. (1998) [Pubmed]
  22. Isolation and characterization of full-length cDNA clones for human alpha-, beta-, and gamma-actin mRNAs: skeletal but not cytoplasmic actins have an amino-terminal cysteine that is subsequently removed. Gunning, P., Ponte, P., Okayama, H., Engel, J., Blau, H., Kedes, L. Mol. Cell. Biol. (1983) [Pubmed]
  23. Synergistic roles of platelet-derived growth factor-BB and interleukin-1beta in phenotypic modulation of human aortic smooth muscle cells. Chen, C.N., Li, Y.S., Yeh, Y.T., Lee, P.L., Usami, S., Chien, S., Chiu, J.J. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  24. Insulin-like growth factor-induced transcriptional activity of the skeletal alpha-actin gene is regulated by signaling mechanisms linked to voltage-gated calcium channels during myoblast differentiation. Spangenburg, E.E., Bowles, D.K., Booth, F.W. Endocrinology (2004) [Pubmed]
  25. Actin-associated proteins in human neutrophils: identification and reorganization upon cell activation. Niggli, V., Jenni, V. Eur. J. Cell Biol. (1989) [Pubmed]
  26. Assignment of the human skeletal muscle alpha actin gene (ACTA1) to 1q42 by fluorescence in situ hybridisation. Akkari, P.A., Eyre, H.J., Wilton, S.D., Callen, D.F., Lane, S.A., Meredith, C., Kedes, L., Laing, N.G. Cytogenet. Cell Genet. (1994) [Pubmed]
  27. Predominantly upper limb weakness, enlarged cisterna magna, and borderline intelligence in a child with de novo mutation of the skeletal muscle alpha-actin gene. Goez, H., Sira, L.B., Jossiphov, J., Borochowitz, Z., Durling, H., Laing, N.G., Nevo, Y. J. Child Neurol. (2005) [Pubmed]
  28. Heparin and heparan sulfate block angiotensin II-induced hypertrophy in cultured neonatal rat cardiomyocytes. A possible role of intrinsic heparin-like molecules in regulation of cardiomyocyte hypertrophy. Akimoto, H., Ito, H., Tanaka, M., Adachi, S., Hata, M., Lin, M., Fujisaki, H., Marumo, F., Hiroe, M. Circulation (1996) [Pubmed]
  29. Initiation and maturation of I-Z-I bodies in the growth tips of transfected myotubes. Ojima, K., Lin, Z.X., Zhang, Z.Q., Hijikata, T., Holtzer, S., Labeit, S., Sweeney, H.L., Holtzer, H. J. Cell. Sci. (1999) [Pubmed]
  30. Plant profilin induces actin polymerization from actin : beta-thymosin complexes and competes directly with beta-thymosins and with negative co-operativity with DNase I for binding to actin. Ballweber, E., Giehl, K., Hannappel, E., Huff, T., Jockusch, B.M., Mannherz, H.G. FEBS Lett. (1998) [Pubmed]
  31. The human skeletal alpha-actin gene is regulated by a muscle-specific enhancer that binds three nuclear factors. Muscat, G.E., Perry, S., Prentice, H., Kedes, L. Gene Expr. (1992) [Pubmed]
  32. Myogenic basic helix-loop-helix proteins and Sp1 interact as components of a multiprotein transcriptional complex required for activity of the human cardiac alpha-actin promoter. Biesiada, E., Hamamori, Y., Kedes, L., Sartorelli, V. Mol. Cell. Biol. (1999) [Pubmed]
  33. CArG boxes in the human cardiac alpha-actin gene are core binding sites for positive trans-acting regulatory factors. Miwa, T., Boxer, L.M., Kedes, L. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  34. Identification and characterization of novel smoothelin isoforms in vascular smooth muscle. Krämer, J., Quensel, C., Meding, J., Cardoso, M.C., Leonhardt, H. J. Vasc. Res. (2001) [Pubmed]
  35. Contractile activity and smooth muscle alpha-actin organization in thrombin-induced human lung myofibroblasts. Bogatkevich, G.S., Tourkina, E., Abrams, C.S., Harley, R.A., Silver, R.M., Ludwicka-Bradley, A. Am. J. Physiol. Lung Cell Mol. Physiol. (2003) [Pubmed]
  36. The role of integrin-linked kinase in liver wound healing. Shafiei, M.S., Rockey, D.C. J. Biol. Chem. (2006) [Pubmed]
  37. Smooth Muscle alpha-actin is a direct target of Notch/CSL. Noseda, M., Fu, Y., Niessen, K., Wong, F., Chang, L., McLean, G., Karsan, A. Circ. Res. (2006) [Pubmed]
  38. Mutations in the beta-tropomyosin (TPM2) gene--a rare cause of nemaline myopathy. Donner, K., Ollikainen, M., Ridanpää, M., Christen, H.J., Goebel, H.H., de Visser, M., Pelin, K., Wallgren-Pettersson, C. Neuromuscul. Disord. (2002) [Pubmed]
  39. Timing of human insulin-like growth factor-1 gene transfer in reinnervating laryngeal muscle. Nakagawa, H., Shiotani, A., O'Malley, B.W., Coleman, M.E., Flint, P.W. Laryngoscope (2004) [Pubmed]
  40. Histone deacetylase HDAC8 associates with smooth muscle alpha-actin and is essential for smooth muscle cell contractility. Waltregny, D., Glénisson, W., Tran, S.L., North, B.J., Verdin, E., Colige, A., Castronovo, V. FASEB J. (2005) [Pubmed]
  41. The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Willems, I.E., Havenith, M.G., De Mey, J.G., Daemen, M.J. Am. J. Pathol. (1994) [Pubmed]
  42. Actin myopathy with nemaline bodies, intranuclear rods, and a heterozygous mutation in ACTA1 (Asp154Asn). Schröder, J.M., Durling, H., Laing, N. Acta Neuropathol. (2004) [Pubmed]
  43. Eukaryotic type II chaperonin CCT interacts with actin through specific subunits. Llorca, O., McCormack, E.A., Hynes, G., Grantham, J., Cordell, J., Carrascosa, J.L., Willison, K.R., Fernandez, J.J., Valpuesta, J.M. Nature (1999) [Pubmed]
  44. Redifferentiation of smooth muscle cells after coronary angioplasty determined via myosin heavy chain expression. Aikawa, M., Sakomura, Y., Ueda, M., Kimura, K., Manabe, I., Ishiwata, S., Komiyama, N., Yamaguchi, H., Yazaki, Y., Nagai, R. Circulation (1997) [Pubmed]
  45. Vascular fate of adipose tissue-derived adult stromal cells in the ischemic murine brain: A combined imaging-histological study. Kubis, N., Tomita, Y., Tran-Dinh, A., Planat-Benard, V., Andr??, M., Karaszewski, B., Waeckel, L., P??nicaud, L., Silvestre, J.S., Casteilla, L., Seylaz, J., Pinard, E. Neuroimage (2007) [Pubmed]
WikiGenes - Universities