The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Inositol (1,4,5)-trisphosphate receptor links to filamentous actin are important for generating local Ca2+ signals in pancreatic acinar cells.

We explored a potential structural and functional link between filamentous actin (F-actin) and inositol (1,4,5)-trisphosphate receptors (IP(3)Rs) in mouse pancreatic acinar cells. Using immunocytochemistry, F-actin and type 2 and 3 IP(3)Rs (IP(3)R2 and IP(3)R3) were identified in a cellular compartment immediately beneath the apical plasma membrane. In an effort to demonstrate that IP(3)R distribution is dependent on an intact F-actin network in the apical subplasmalemmal region, cells were treated with the actin-depolymerising agent latrunculin B. Immunocytochemistry indicated that latrunculin B treatment reduced F-actin in the basolateral subplasmalemmal compartment, and reduced and fractured F-actin in the apical subplasmalemmal compartment. This latrunculin-B-induced loss of F-actin in the apical region coincided with a reduction in IP(3)R2 and IP(3)R3, with the remaining IP(3)Rs localized with the remaining F-actin. Experiments using western blot analysis showed that IP(3)R3s are resistant to extraction by detergents, which indicates a potential interaction with the cytoskeleton. Latrunculin B treatment in whole-cell patch-clamped cells inhibited Ca(2+)-dependent Cl(-) current spikes evoked by inositol (2,4,5)-trisphosphate; this is due to an inhibition of the underlying local Ca(2+) signal. Based on these findings, we suggest that IP(3)Rs form links with F-actin in the apical domain and that these links are essential for the generation of local Ca(2+) spikes.[1]

References

 
WikiGenes - Universities