The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Proopiomelanocortin processing in the anterior pituitary of the ovine fetus after lesion of the hypothalamic paraventricular nucleus.

The hypothalamic-pituitary-adrenocortical axis plays an essential role in the maturation of fetal organs and, in sheep, birth. Lesioning the paraventricular nucleus (PVN) in fetal sheep prevents adrenocortical maturation and parturition without altering plasma immunoreactive ACTH concentrations. The purpose of this study was to determine the effect of PVN lesion on anterior pituitary processing of proopiomelanocortin (POMC) to ACTH, plasma concentrations of ACTH and ACTH precursors (POMC; 22-kDa proACTH), and expression of subtilisin-like prohormone convertase 3 (SPC3) in corticotropes in fetal sheep. PVN lesion did not affect anterior pituitary POMC and 22-kDa proACTH levels, whereas ACTH was significantly affected. The ACTH precursor (POMC plus 22-kDa proACTH) to ACTH ratio in the anterior pituitary was significantly increased after PVN lesion. Post-PVN lesion, fetal plasma ACTH(1-39), was below the limit of detection, whereas ACTH precursors (POMC plus 22-kDa proACTH) were not affected. In the inferior region of the anterior pituitary, 40-50% of corticotropes had detectable SPC3 hybridization signal, and PVN lesion did not change the extent of colocalization of POMC and SPC3, or SPC3 mRNA levels within corticotropes. Neither the percent of corticotropes in the superior region containing SPC3 hybridization (7-12%) or hybridization signal strength was altered in response to PVN lesion. In conclusion, the fetal PVN is necessary for sustaining adequate anterior pituitary processing of POMC to ACTH and ACTH release needed for maturing the adrenal cortex in the sheep fetus.[1]

References

 
WikiGenes - Universities