The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Adrenal Cortex

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Adrenal Cortex


High impact information on Adrenal Cortex

  • Familial glucocorticoid deficiency (FGD), or hereditary unresponsiveness to adrenocorticotropin (ACTH; OMIM 202200), is an autosomal recessive disorder resulting from resistance to the action of ACTH on the adrenal cortex, which stimulates glucocorticoid production [6].
  • Here, we provide evidence for this hypothesis by the cloning and characterization of a serine protease that is upregulated during growth of the adrenal cortex [7].
  • Acth in turn activates Acth receptors in the adrenal cortex to increase synthesis and release of glucocorticoids [8].
  • Hyperandrogenemia is the hallmark of the polycystic ovary syndrome, yet the relative contributions of the adrenal cortex and ovary to the overproduction of androgen remain unclear [9].
  • At the onset, all patients with autoimmune AD (100%) had detectable adrenal cortex and/or steroid 21-hydroxylase autoantibodies [10].
  • The expression of neuron-specific proteins in the zona glomerulosa and/or aldosterone-producing adenomas of the human adrenal has been reported; those include synaptophysin, neuronal cell adhesion molecule (NCAM), serotonin-receptor 4 (5-HT4), metabotropic glutamate receptor 3 (GRM3 / mGluR3) among other glutamate receptors, Purkinje cell protein 4 (PCP4), metallothionein 3 (MT3), activating transcription factor 3 (ATF3), and voltage-dependent calcium channels, indicating the possible common regulatory processes between neurons and aldosterone-producing cells [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21].

Chemical compound and disease context of Adrenal Cortex


Biological context of Adrenal Cortex


Anatomical context of Adrenal Cortex


Associations of Adrenal Cortex with chemical compounds

  • Those findings were among the first indications of the function and physiological role of the human fetal adrenal cortex and led Diczfalusy and co-workers to propose the concept of the feto-placental unit, in which DHEA-S produced by the fetal adrenal cortex is used by the placenta for estrogen synthesis [27].
  • Guanosine triphosphate cyclohydrolase, the enzyme that is apparently rate-limiting in biopterin biosynthesis, is increased in adrenal cortex and medulla of rats treated with insulin or reserpine [36].
  • The first gene so far tested, which encodes the alpha chain of Gi2, showed mutations that replaced arginine-179 with either cysteine or histidine in 3 of 11 tumors of the adrenal cortex and 3 of 10 endocrine tumors of the ovary [37].
  • High-flux mitochondrial cholesterol trafficking, a specialized function of the adrenal cortex [38].
  • Regulation of angiotensin II receptors in the rat adrenal cortex by dietary electrolytes [39].

Gene context of Adrenal Cortex


Analytical, diagnostic and therapeutic context of Adrenal Cortex


  1. Identification by molecular cloning of an autoantigen associated with Addison's disease as steroid 17 alpha-hydroxylase. Krohn, K., Uibo, R., Aavik, E., Peterson, P., Savilahti, K. Lancet (1992) [Pubmed]
  2. Steroid disorders in children: congenital adrenal hyperplasia and apparent mineralocorticoid excess. New, M.I., Wilson, R.C. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  3. Diagnosis and management of congenital adrenal hyperplasia. New, M.I. Annu. Rev. Med. (1998) [Pubmed]
  4. Expression and regulation of the lipoprotein lipase gene in human adrenal cortex. Staels, B., Martin, G., Martinez, M., Albert, C., Peinado-Onsurbe, J., Saladin, R., Hum, D.W., Reina, M., Vilaro, S., Auwerx, J. J. Biol. Chem. (1996) [Pubmed]
  5. Expression of the novel adrenocorticotropin-responsive gene selective Alzheimer's disease indicator-1 in the normal adrenal cortex and in adrenocortical adenomas and carcinomas. Luciani, P., Ferruzzi, P., Arnaldi, G., Crescioli, C., Benvenuti, S., Nesi, G., Valeri, A., Greeve, I., Serio, M., Mannelli, M., Peri, A. J. Clin. Endocrinol. Metab. (2004) [Pubmed]
  6. Mutations in MRAP, encoding a new interacting partner of the ACTH receptor, cause familial glucocorticoid deficiency type 2. Metherell, L.A., Chapple, J.P., Cooray, S., David, A., Becker, C., Rüschendorf, F., Naville, D., Begeot, M., Khoo, B., Nürnberg, P., Huebner, A., Cheetham, M.E., Clark, A.J. Nat. Genet. (2005) [Pubmed]
  7. Characterization of a serine protease that cleaves pro-gamma-melanotropin at the adrenal to stimulate growth. Bicknell, A.B., Lomthaisong, K., Woods, R.J., Hutchinson, E.G., Bennett, H.P., Gladwell, R.T., Lowry, P.J. Cell (2001) [Pubmed]
  8. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Bale, T.L., Contarino, A., Smith, G.W., Chan, R., Gold, L.H., Sawchenko, P.E., Koob, G.F., Vale, W.W., Lee, K.F. Nat. Genet. (2000) [Pubmed]
  9. Hyperandrogenism in polycystic ovary syndrome. Evidence of dysregulation of 11 beta-hydroxysteroid dehydrogenase. Rodin, A., Thakkar, H., Taylor, N., Clayton, R. N. Engl. J. Med. (1994) [Pubmed]
  10. Autoimmune adrenal insufficiency and autoimmune polyendocrine syndromes: autoantibodies, autoantigens, and their applicability in diagnosis and disease prediction. Betterle, C., Dal Pra, C., Mantero, F., Zanchetta, R. Endocr. Rev. (2002) [Pubmed]
  11. Neuroendocrine properties of adrenocortical cells. Ehrhart-Bornstein, M., Hilbers, U. Horm. Metab. Res. (1998) [Pubmed]
  12. Effect of serotonin4 (5-HT4) receptor agonists on aldosterone secretion in idiopathic hyperaldosteronism. Lefebvre, H., Cartier, D., Duparc, C., Contesse, V., Lihrmann, I., Delarue, C., Vaudry, H., Fischmeister, R., Kuhn, J.M. Endocr. Res. (2000) [Pubmed]
  13. Expression profile of serotonin4 (5-HT4) receptors in adrenocortical aldosterone-producing adenomas. Cartier, D., Jégou, S., Parmentier, F., Lihrmann, I., Louiset, E., Kuhn, J.M., Bastard, C., Plouin, P.F., Godin, M., Vaudry, H., Lefebvre, H. Eur. J. Endocrinol. (2005) [Pubmed]
  14. Glutamate receptors and the regulation of steroidogenesis in the human adrenal gland: the metabotropic pathway. Felizola, S.J., Nakamura, Y., Satoh, F., Morimoto, R., Kikuchi, K., Nakamura, T., Hozawa, A., Wang, L., Onodera, Y., Ise, K., McNamara, K.M., Midorikawa, S., Suzuki, S., Sasano, H. Mol. Cell. Endocrinol. (2014) [Pubmed]
  15. Zona glomerulosa cells of the mouse adrenal cortex are intrinsic electrical oscillators. Hu, C., Rusin, C.G., Tan, Z., Guagliardo, N.A., Barrett, P.Q. J. Clin. Invest. (2012) [Pubmed]
  16. Voltage-gated calcium channels in the human adrenal and primary aldosteronism. Felizola, S.J., Maekawa, T., Nakamura, Y., Satoh, F., Ono, Y., Kikuchi, K., Aritomi, S., Ikeda, K., Yoshimura, M., Tojo, K., Sasano, H. J. Steroid. Biochem. Mol. Biol. (2014) [Pubmed]
  17. Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Azizan, E.A., Poulsen, H., Tuluc, P., Zhou, J., Clausen, M.V., Lieb, A., Maniero, C., Garg, S., Bochukova, E.G., Zhao, W., Shaikh, L.H., Brighton, C.A., Teo, A.E., Davenport, A.P., Dekkers, T., Tops, B., Küsters, B., Ceral, J., Yeo, G.S., Neogi, S.G., McFarlane, I., Rosenfeld, N., Marass, F., Hadfield, J., Margas, W., Chaggar, K., Solar, M., Deinum, J., Dolphin, A.C., Farooqi, I.S., Striessnig, J., Nissen, P., Brown, M.J. Nat. Genet. (2013) [Pubmed]
  18. Metallothionein-3 (MT-3) in the human adrenal cortex and its disorders. Felizola, S.J., Nakamura, Y., Arata, Y., Ise, K., Satoh, F., Rainey, W.E., Midorikawa, S., Suzuki, S., Sasano, H. Endocr. Pathol. (2014) [Pubmed]
  19. Overexpression of serotonin4 receptors in cisapride-responsive adrenocorticotropin-independent bilateral macronodular adrenal hyperplasia causing Cushing's syndrome. Cartier, D., Lihrmann, I., Parmentier, F., Bastard, C., Bertherat, J., Caron, P., Kuhn, J.M., Lacroix, A., Tabarin, A., Young, J., Vaudry, H., Lefebvre, H. J. Clin. Endocrinol. Metab. (2003) [Pubmed]
  20. PCP4: a regulator of aldosterone synthesis in human adrenocortical tissues. Felizola, S.J., Nakamura, Y., Ono, Y., Kitamura, K., Kikuchi, K., Onodera, Y., Ise, K., Takase, K., Sugawara, A., Hattangady, N., Rainey, W.E., Satoh, F., Sasano, H. J. Mol. Endocrinol. (2014) [Pubmed]
  21. Activating transcription factor 3 (ATF3) in the human adrenal cortex: its possible involvement in aldosterone biosynthesis. Felizola, S.J., Nakamura, Y., Ozawa, Y., Ono, Y., Morimoto, R., Midorikawa, S., Suzuki, S., Satoh, F., Sasano, H. Tohoku. J. Exp. Med. (2014) [Pubmed]
  22. Ectopic beta-adrenergic receptors coupled to adenylate cyclase in human adrenocortical carcinomas. Katz, M.S., Kelly, T.M., Dax, E.M., Pineyro, M.A., Partilla, J.S., Gregerman, R.I. J. Clin. Endocrinol. Metab. (1985) [Pubmed]
  23. A role for epidermal growth factor in the morphological and functional maturation of the adrenal gland in the fetal rhesus monkey in vivo. Coulter, C.L., Read, L.C., Carr, B.R., Tarantal, A.F., Barry, S., Styne, D.M. J. Clin. Endocrinol. Metab. (1996) [Pubmed]
  24. The effects of methaqualone on pituitary-adrenocortical activity in mice. Meyer, J.S., Boggan, W.O. Psychopharmacology (Berl.) (1977) [Pubmed]
  25. Postpuberal castration and prostatic carcinoma. Egle, N., Altwein, J.E. Urology (1975) [Pubmed]
  26. Growth hormone stimulates adrenal steroidogenesis in the fetus. Devaskar, U.P., Devaskar, S.U., Voina, S., Velayo, N., Sperling, M.A. Nature (1981) [Pubmed]
  27. Developmental and functional biology of the primate fetal adrenal cortex. Mesiano, S., Jaffe, R.B. Endocr. Rev. (1997) [Pubmed]
  28. Coexistence of guanylate cyclase and atrial natriuretic factor receptor in a 180-kD protein. Paul, A.K., Marala, R.B., Jaiswal, R.K., Sharma, R.K. Science (1987) [Pubmed]
  29. Gene expression, localization, and characterization of endothelin A and B receptors in the human adrenal cortex. Rossi, G., Albertin, G., Belloni, A., Zanin, L., Biasolo, M.A., Prayer-Galetti, T., Bader, M., Nussdorfer, G.G., Palù, G., Pessina, A.C. J. Clin. Invest. (1994) [Pubmed]
  30. Expression of p21(WAF1/CIP1/SDI1) and p53 in apoptotic cells in the adrenal cortex and induction by ischemia/reperfusion injury. Didenko, V.V., Wang, X., Yang, L., Hornsby, P.J. J. Clin. Invest. (1996) [Pubmed]
  31. Ornithine decarboxylase activity: control by cyclic nucleotides. Byus, C.V., Russell, D.H. Science (1975) [Pubmed]
  32. The involvement of serotonin in regulation of pituitary-adrenocortical function. Fuller, R.W. Frontiers in neuroendocrinology. (1992) [Pubmed]
  33. Glucocorticoid-suppressible hyperaldosteronism results from hybrid genes created by unequal crossovers between CYP11B1 and CYP11B2. Pascoe, L., Curnow, K.M., Slutsker, L., Connell, J.M., Speiser, P.W., New, M.I., White, P.C. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  34. Identification of des-(Gly-Ile)-endozepine as an effector of corticotropin-dependent adrenal steroidogenesis: stimulation of cholesterol delivery is mediated by the peripheral benzodiazepine receptor. Besman, M.J., Yanagibashi, K., Lee, T.D., Kawamura, M., Hall, P.F., Shively, J.E. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  35. Simultaneous transfection of COS-1 cells with mitochondrial and microsomal steroid hydroxylases: incorporation of a steroidogenic pathway into nonsteroidogenic cells. Zuber, M.X., Mason, J.I., Simpson, E.R., Waterman, M.R. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  36. Biopterin cofactor biosynthesis: independent regulation of GTP cyclohydrolase in adrenal medulla and cortex. Viveros, O.H., Lee, C.L., Abou-Donia, M.M., Nixon, J.C., Nichol, C.A. Science (1981) [Pubmed]
  37. Two G protein oncogenes in human endocrine tumors. Lyons, J., Landis, C.A., Harsh, G., Vallar, L., Grünewald, K., Feichtinger, H., Duh, Q.Y., Clark, O.H., Kawasaki, E., Bourne, H.R. Science (1990) [Pubmed]
  38. High-flux mitochondrial cholesterol trafficking, a specialized function of the adrenal cortex. Jefcoate, C. J. Clin. Invest. (2002) [Pubmed]
  39. Regulation of angiotensin II receptors in the rat adrenal cortex by dietary electrolytes. Douglas, J., Catt, K.J. J. Clin. Invest. (1976) [Pubmed]
  40. Platelet factor 4 inhibits FGF2-induced endothelial cell proliferation via the extracellular signal-regulated kinase pathway but not by the phosphatidylinositol 3-kinase pathway. Sulpice, E., Bryckaert, M., Lacour, J., Contreres, J.O., Tobelem, G. Blood (2002) [Pubmed]
  41. Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues, macrophages, and tumors. Berse, B., Brown, L.F., Van de Water, L., Dvorak, H.F., Senger, D.R. Mol. Biol. Cell (1992) [Pubmed]
  42. CAMP-dependent protein kinase enhances CYP17 transcription via MKP-1 activation in H295R human adrenocortical cells. Sewer, M.B., Waterman, M.R. J. Biol. Chem. (2003) [Pubmed]
  43. Induction of interferon-gamma inducing factor in the adrenal cortex. Conti, B., Jahng, J.W., Tinti, C., Son, J.H., Joh, T.H. J. Biol. Chem. (1997) [Pubmed]
  44. Atypical prodynorphin gene expression in corticosteroid-producing cells of the rat adrenal gland. Day, R., Schafer, M.K., Collard, M.W., Watson, S.J., Akil, H. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  45. The cortisol response during heart-lung bypass. Taylor, K.M., Jones, J.V., Walker, M.S., Rao, S., Bain, W.H. Circulation (1976) [Pubmed]
  46. Role of tissue renin in the regulation of aldosterone biosynthesis in the adrenal cortex of nephrectomized rats. Volpe, M., Gigante, B., Enea, I., Porcellini, A., Russo, R., Lee, M.A., Magri, P., Condorelli, G., Savoia, C., Lindpaintner, K., Rubattu, S. Circ. Res. (1997) [Pubmed]
  47. Overexpression of hepatic lipase in transgenic mice decreases apolipoprotein B-containing and high density lipoproteins. Evidence that hepatic lipase acts as a ligand for lipoprotein uptake. Dichek, H.L., Brecht, W., Fan, J., Ji, Z.S., McCormick, S.P., Akeefe, H., Conzo, L., Sanan, D.A., Weisgraber, K.H., Young, S.G., Taylor, J.M., Mahley, R.W. J. Biol. Chem. (1998) [Pubmed]
  48. TRP4 (CCE1) protein is part of native calcium release-activated Ca2+-like channels in adrenal cells. Philipp, S., Trost, C., Warnat, J., Rautmann, J., Himmerkus, N., Schroth, G., Kretz, O., Nastainczyk, W., Cavalie, A., Hoth, M., Flockerzi, V. J. Biol. Chem. (2000) [Pubmed]
WikiGenes - Universities