Asymmetric synthesis of dihydrofurans via a formal retro-Claisen photorearrangement.
Solution-phase irradiation of a series of syn-7-benzoylnorbornene derivatives is shown to lead to cis-fused dihydrofuran derivatives in low quantum but excellent chemical yields in what is formally a retro-Claisen rearrangement. In analogy to the well-known Paterno-Buchi reaction, the first step of the rearrangement is suggested to involve (n,pi)(3)-mediated addition of the carbonyl oxygen to the norbornene double bond, producing a triplet 1,4-biradical. This intermediate, rather than closing to the oxetane, undergoes cleavage accompanied by intersystem crossing to form the dihydrofuran. To determine whether the retro-Claisen photorearrangement could be carried out enantioselectively, the 7-benzoylnorbornene reactant was equipped with a para-carboxylic acid substituent to which a series of optically pure amines was attached ionically via salt bridges. Irradiation of these salts in the crystalline state followed by diazomethane workup (the solid-state ionic chiral auxiliary method) was shown to afford the corresponding dihydrofuran in optical yields as high as 93% at 95% conversion. X-ray crystallography revealed that the enantioselectivity arises from crystallization of the reactant in a conformation in which the carbonyl oxygen is more favorably oriented for bond formation to one end of the norbornene double bond than the other, thus leading to a predominance of a single enantiomer.[1]References
- Asymmetric synthesis of dihydrofurans via a formal retro-Claisen photorearrangement. Xia, W., Yang, C., Patrick, B.O., Scheffer, J.R., Scott, C. J. Am. Chem. Soc. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg