The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Crystallography

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Crystallography

 

High impact information on Crystallography

  • However, the exact nature of the trimolecular complex found during the TCR/antigen/MHC interaction awaits the structural characterization of the TCR by crystallography [6].
  • Binding of a ribonucleoside triphosphate to an RNA polymerase II transcribing complex, with base pairing to the template DNA, was revealed by X-ray crystallography [7].
  • Here we show that the structure of human RCC1, solved to 1.7-A resolution by X-ray crystallography, consists of a seven-bladed propeller formed from internal repeats of 51-68 residues per blade [8].
  • Structure of the alpha beta tubulin dimer by electron crystallography [9].
  • Here we report the three-dimensional structure of a photosystem II subcomplex, containing the proteins D1, D2, CP47 and cytochrome b-559, determined by electron crystallography [10].
 

Chemical compound and disease context of Crystallography

 

Biological context of Crystallography

 

Anatomical context of Crystallography

 

Associations of Crystallography with chemical compounds

  • We have determined the three-dimensional structure of the human enzyme, a single-chain glycoprotein of 449 amino acids, by X-ray crystallography and established its primary structure by sequencing complementary DNA clones [26].
  • Following the structural elucidation of these molecules by X-ray crystallography in 1996, several syntheses of epothilones A and B have been reported, indicative of the potential importance of these molecules in the cancer field [27].
  • The three-dimensional structure of a ternary complex of the purine repressor, PurR, bound to both its corepressor, hypoxanthine, and the 16-base pair purF operator site has been solved at 2.7 A resolution by x-ray crystallography [28].
  • Photolysis of the carbon monoxide complex of myoglobin: nanosecond time-resolved crystallography [29].
  • The biochemical information derived from analyses of ACHE and BCHE from human, Torpedo, mouse, and Drosophila, as well as that from the recombinant forms of their natural variants and site-directed mutants, can currently be re-examined in view of the recent X-ray crystallography data revealing the three-dimensional structure of Torpedo ACHE [30].
 

Gene context of Crystallography

  • The structure of ligand-binding repeat 5 (LR5) of the LDLR, determined to 1.7 A resolution by X-ray crystallography and presented here, contains a calcium ion coordinated by acidic residues that lie at the carboxy-terminal end of the domain and are conserved among LDL-A modules [31].
  • The structure of a recombinant human M-CSF dimer, determined at 2.5 angstroms by x-ray crystallography, contains two bundles of four alpha helices laid end-to-end, with an interchain disulfide bond [32].
  • When combined with the fact that our inhibitors are reversible binders in light-excluded conditions, the results of the crystallography provide the basis for the rational design of nonphotoreactive inhibitors of the TNF-alpha-TNFRc1 interaction [33].
  • Automated BaP docking using a Lamarckian genetic algorithm with GNMT X-ray crystallography revealed a BaP preference for the S-adenosylmethionine-binding domain of the dimeric form of GNMT, a novel finding of a cellular defense against potentially damaging exposures [34].
  • Electron crystallography of negatively stained two-dimensional crystals of CFTR has revealed the overall architecture of this channel for two different conformational states [35].
 

Analytical, diagnostic and therapeutic context of Crystallography

References

  1. The antigenic identity of peptide-MHC complexes: a comparison of the conformations of five viral peptides presented by HLA-A2. Madden, D.R., Garboczi, D.N., Wiley, D.C. Cell (1993) [Pubmed]
  2. Structural details of the binding of guanosine diphosphate to elongation factor Tu from E. coli as studied by X-ray crystallography. la Cour, T.F., Nyborg, J., Thirup, S., Clark, B.F. EMBO J. (1985) [Pubmed]
  3. Crystal structure of NH3-dependent NAD+ synthetase from Bacillus subtilis. Rizzi, M., Nessi, C., Mattevi, A., Coda, A., Bolognesi, M., Galizzi, A. EMBO J. (1996) [Pubmed]
  4. Crystal structure of glutamate-1-semialdehyde aminomutase: an alpha2-dimeric vitamin B6-dependent enzyme with asymmetry in structure and active site reactivity. Hennig, M., Grimm, B., Contestabile, R., John, R.A., Jansonius, J.N. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  5. The structure of human parvovirus B19. Kaufmann, B., Simpson, A.A., Rossmann, M.G. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  6. The molecular basis of T-cell specificity. Matis, L.A. Annu. Rev. Immunol. (1990) [Pubmed]
  7. Structural basis of transcription: nucleotide selection by rotation in the RNA polymerase II active center. Westover, K.D., Bushnell, D.A., Kornberg, R.D. Cell (2004) [Pubmed]
  8. The 1.7 A crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller. Renault, L., Nassar, N., Vetter, I., Becker, J., Klebe, C., Roth, M., Wittinghofer, A. Nature (1998) [Pubmed]
  9. Structure of the alpha beta tubulin dimer by electron crystallography. Nogales, E., Wolf, S.G., Downing, K.H. Nature (1998) [Pubmed]
  10. Three-dimensional structure of the plant photosystem II reaction centre at 8 A resolution. Rhee, K.H., Morris, E.P., Barber, J., Kühlbrandt, W. Nature (1998) [Pubmed]
  11. Iron center, substrate recognition and mechanism of peptide deformylase. Becker, A., Schlichting, I., Kabsch, W., Groche, D., Schultz, S., Wagner, A.F. Nat. Struct. Biol. (1998) [Pubmed]
  12. Crystallographic and spectroscopic studies of native, aminoquinol, and monovalent cation-bound forms of methylamine dehydrogenase from Methylobacterium extorquens AM1. Labesse, G., Ferrari, D., Chen, Z.W., Rossi, G.L., Kuusk, V., McIntire, W.S., Mathews, F.S. J. Biol. Chem. (1998) [Pubmed]
  13. Anticooperative ligand binding properties of recombinant ferric Vitreoscilla homodimeric hemoglobin: a thermodynamic, kinetic and X-ray crystallographic study. Bolognesi, M., Boffi, A., Coletta, M., Mozzarelli, A., Pesce, A., Tarricone, C., Ascenzi, P. J. Mol. Biol. (1999) [Pubmed]
  14. Crystal structure of a ternary complex of Escherichia coli malate dehydrogenase citrate and NAD at 1.9 A resolution. Hall, M.D., Banaszak, L.J. J. Mol. Biol. (1993) [Pubmed]
  15. Characteristics of the Pro225His mutation in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase that appears under selective pressure of dose-escalating quinoxaline treatment of HIV-1. Pelemans, H., Esnouf, R., Dunkler, A., Parniak, M.A., Vandamme, A.M., Karlsson, A., De Clercq, E., Kleim, J.P., Balzarini, J. J. Virol. (1997) [Pubmed]
  16. Structure of human cyclophilin and its binding site for cyclosporin A determined by X-ray crystallography and NMR spectroscopy. Kallen, J., Spitzfaden, C., Zurini, M.G., Wider, G., Widmer, H., Wüthrich, K., Walkinshaw, M.D. Nature (1991) [Pubmed]
  17. Inhibition of the hammerhead ribozyme cleavage reaction by site-specific binding of Tb. Feig, A.L., Scott, W.G., Uhlenbeck, O.C. Science (1998) [Pubmed]
  18. Atomic structure of FKBP-FK506, an immunophilin-immunosuppressant complex. Van Duyne, G.D., Standaert, R.F., Karplus, P.A., Schreiber, S.L., Clardy, J. Science (1991) [Pubmed]
  19. Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain. Weissenhorn, W., Carfí, A., Lee, K.H., Skehel, J.J., Wiley, D.C. Mol. Cell (1998) [Pubmed]
  20. Two N-terminal domains of Kv4 K(+) channels regulate binding to and modulation by KChIP1. Scannevin, R.H., Wang, K., Jow, F., Megules, J., Kopsco, D.C., Edris, W., Carroll, K.C., Lü, Q., Xu, W., Xu, Z., Katz, A.H., Olland, S., Lin, L., Taylor, M., Stahl, M., Malakian, K., Somers, W., Mosyak, L., Bowlby, M.R., Chanda, P., Rhodes, K.J. Neuron (2004) [Pubmed]
  21. Tubulin and microtubule structure. Downing, K.H., Nogales, E. Curr. Opin. Cell Biol. (1998) [Pubmed]
  22. X-ray crystallography study on ribosome recycling: the mechanism of binding and action of RRF on the 50S ribosomal subunit. Wilson, D.N., Schluenzen, F., Harms, J.M., Yoshida, T., Ohkubo, T., Albrecht, R., Buerger, J., Kobayashi, Y., Fucini, P. EMBO J. (2005) [Pubmed]
  23. Cytochrome c oxidase. Ostermeier, C., Iwata, S., Michel, H. Curr. Opin. Struct. Biol. (1996) [Pubmed]
  24. Characterisation of an improved two-dimensional p22121 crystal from bovine rhodopsin. Krebs, A., Villa, C., Edwards, P.C., Schertler, G.F. J. Mol. Biol. (1998) [Pubmed]
  25. Crystal structure of macrophage migration inhibitory factor from human lymphocyte at 2.1 A resolution. Sugimoto, H., Suzuki, M., Nakagawa, A., Tanaka, I., Nishihira, J. FEBS Lett. (1996) [Pubmed]
  26. Structure of human pancreatic lipase. Winkler, F.K., D'Arcy, A., Hunziker, W. Nature (1990) [Pubmed]
  27. Synthesis of epothilones A and B in solid and solution phase. Nicolaou, K.C., Winssinger, N., Pastor, J., Ninkovic, S., Sarabia, F., He, Y., Vourloumis, D., Yang, Z., Li, T., Giannakakou, P., Hamel, E. Nature (1997) [Pubmed]
  28. Crystal structure of LacI member, PurR, bound to DNA: minor groove binding by alpha helices. Schumacher, M.A., Choi, K.Y., Zalkin, H., Brennan, R.G. Science (1994) [Pubmed]
  29. Photolysis of the carbon monoxide complex of myoglobin: nanosecond time-resolved crystallography. Srajer, V., Teng, T., Ursby, T., Pradervand, C., Ren, Z., Adachi, S., Schildkamp, W., Bourgeois, D., Wulff, M., Moffat, K. Science (1996) [Pubmed]
  30. Excavations into the active-site gorge of cholinesterases. Soreq, H., Gnatt, A., Loewenstein, Y., Neville, L.F. Trends Biochem. Sci. (1992) [Pubmed]
  31. Molecular basis of familial hypercholesterolaemia from structure of LDL receptor module. Fass, D., Blacklow, S., Kim, P.S., Berger, J.M. Nature (1997) [Pubmed]
  32. Three-dimensional structure of dimeric human recombinant macrophage colony-stimulating factor. Pandit, J., Bohm, A., Jancarik, J., Halenbeck, R., Koths, K., Kim, S.H. Science (1992) [Pubmed]
  33. Photochemically enhanced binding of small molecules to the tumor necrosis factor receptor-1 inhibits the binding of TNF-alpha. Carter, P.H., Scherle, P.A., Muckelbauer, J.K., Voss, M.E., Liu, R.Q., Thompson, L.A., Tebben, A.J., Solomon, K.A., Lo, Y.C., Li, Z., Strzemienski, P., Yang, G., Falahatpisheh, N., Xu, M., Wu, Z., Farrow, N.A., Ramnarayan, K., Wang, J., Rideout, D., Yalamoori, V., Domaille, P., Underwood, D.J., Trzaskos, J.M., Friedman, S.M., Newton, R.C., Decicco, C.P., Muckelbauer, J.A. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  34. Glycine N-methyltransferase tumor susceptibility gene in the benzo(a)pyrene-detoxification pathway. Chen, S.Y., Lin, J.R., Darbha, R., Lin, P., Liu, T.Y., Chen, Y.M. Cancer Res. (2004) [Pubmed]
  35. Purification and crystallization of the cystic fibrosis transmembrane conductance regulator (CFTR). Rosenberg, M.F., Kamis, A.B., Aleksandrov, L.A., Ford, R.C., Riordan, J.R. J. Biol. Chem. (2004) [Pubmed]
  36. Structure of the bifunctional and Golgi-associated formiminotransferase cyclodeaminase octamer. Mao, Y., Vyas, N.K., Vyas, M.N., Chen, D.H., Ludtke, S.J., Chiu, W., Quiocho, F.A. EMBO J. (2004) [Pubmed]
  37. Structure of the binding site for inositol phosphates in a PH domain. Hyvönen, M., Macias, M.J., Nilges, M., Oschkinat, H., Saraste, M., Wilmanns, M. EMBO J. (1995) [Pubmed]
  38. Protein aggregation and amyloidosis: confusion of the kinds? Rousseau, F., Schymkowitz, J., Serrano, L. Curr. Opin. Struct. Biol. (2006) [Pubmed]
  39. Nucleoside diphosphate kinase. Investigation of the intersubunit contacts by site-directed mutagenesis and crystallography. Karlsson, A., Mesnildrey, S., Xu, Y., Moréra, S., Janin, J., Véron, M. J. Biol. Chem. (1996) [Pubmed]
  40. Osmolytes stabilize ribonuclease S by stabilizing its fragments S protein and S peptide to compact folding-competent states. Ratnaparkhi, G.S., Varadarajan, R. J. Biol. Chem. (2001) [Pubmed]
 
WikiGenes - Universities