The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Chlorine dioxide oxidations of tyrosine, N-acetyltyrosine, and dopa.

The reactions of aqueous ClO2 with tyrosine, N-acetyltyrosine, and dopa (3,4-dihydroxyphenylalanine) are investigated from pH 4 to 7. The reaction rates increase greatly with pH to give a series of oxidized products. Tyrosine and N-acetyltyrosine have similar reactivities with second-order rate constants (25.0 degrees C) for their phenoxide forms equal to 1.8x10(8) and 7.6x10(7) M-1 s-1, respectively. Both species generate phenoxyl radicals that react rapidly with a second ClO2 at the 3 position to give observable but short-lived adducts with proposed C(H)OClO bonding. The decay of these phenoxyl-ClO2 adducts also is rapid and is base-assisted to form dopaquinone (from tyrosine) and N-acetyldopaquinone (from N-acetyltyrosine) as initial products. The consumption of two ClO2 molecules corresponds to a four-electron oxidation that gives ClO2- in the first step and HOCl in the second step. The reaction between ClO2 and the deprotoned-catechol form of dopa is extremely fast (2.8x10(9) M-1 s-1). Dopa consumes two ClO2 to give dopaquinone and 2ClO2- as products. Above pH 4, dopaquinone cyclizes to give cyclodopa, which in turn is rapidly oxidized to dopachrome. A resolved first-order rate constant of 249 s-1 is evaluated for the cyclization of the basic form of dopaquinone that leads to dopachrome as a product with strong absorption bands at 305 and 485 nm.[1]

References

  1. Chlorine dioxide oxidations of tyrosine, N-acetyltyrosine, and dopa. Napolitano, M.J., Green, B.J., Nicoson, J.S., Margerum, D.W. Chem. Res. Toxicol. (2005) [Pubmed]
 
WikiGenes - Universities