The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Cyclization


High impact information on Cyclization

  • We now find that certain di- and trinucleotides with free 3' hydroxyl groups reopen the circular IVS at the cyclization junction, producing a linear molecule with the oligonucleotide covalently attached to its 5' end [6].
  • According to this model, the guanosine cofactor provides the free 3' hydroxyl necessary to initiate a series of three transfers that results in splicing of the pre-rRNA and cyclization of the excised IVS [7].
  • The mechanism and sequence of this cyclase are closely related to those of 2,3-oxidosqualene cyclases that catalyze the cyclization step in cholesterol biosynthesis [8].
  • An antibody has been induced that efficiently catalyzes a cationic cyclization in which an acyclic olefinic sulfonate ester substrate is converted almost exclusively (98 percent) to a cyclic alcohol [9].
  • An analog of luteinizing hormone-releasing hormone containing a gamma-lactam as a conformational constraint has been prepared with the use of a novel cyclization of a methionine sulfonium salt [10].

Chemical compound and disease context of Cyclization


Biological context of Cyclization


Anatomical context of Cyclization


Associations of Cyclization with chemical compounds

  • Specifically, chemical synthesis combined with peptide cyclization mediated by nonribosomal thioesterase domains enabled the synthesis of glycosylated cyclopeptides, inhibitors of integrin receptors, peptide/polyketide hybrids, lipopeptide antibiotics, and streptogramin B antibiotics [26].
  • In addition to the synthetic potential of these cyclization catalysts, which is the main focus of this review, different enzymes for tailoring of peptide scaffolds as well as the manipulation of carrier proteins with reporter-labeled coenzyme A analogs are discussed [26].
  • We propose that the enzyme catalyses the intranuclear cyclization of nicotinamide adenine dinucleotide to cyclic adenosine diphosphate ribose [27].
  • We demonstrate a succinimide at the C-terminus of the spliced internal protein, implicating cyclization of asparagine in resolution of the branched intermediate, and we identify an alkali-labile bond in the branched intermediate [28].
  • The multifunctional ADP-ribosyl cyclase, CD38, catalyzes the cyclization of NAD(+) to cyclic ADP-ribose (cADPr) [29].

Gene context of Cyclization

  • Cyclization of Gln1 to form pyroglutamate (pE) limited the site of cross-linking in the mutant to Lys45, permitting identification of receptor residues that are proximal to this residue of bound EGF [30].
  • HMO1 bends DNA, as measured by DNA cyclization assays, facilitating cyclization of 136-, 105-, and 87-bp DNA, but not 75-bp DNA, and it has a significantly longer residence time on DNA minicircles compared with linear duplex DNA [31].
  • Cyclization by lactam formation has shown that a core region of human PTH (hPTH) from residues 16-26 binds as an alpha-helix to the receptor and that the biological effects are remarkably sensitive to ring size [32].
  • Furthermore, stimulated nuclear extracts depleted of IRF-1 and NF-kappaB cannot induce cyclization [33].
  • C-terminal cyclization of an SDF-1 small peptide analogue dramatically increases receptor affinity and activation of the CXCR4 receptor [34].

Analytical, diagnostic and therapeutic context of Cyclization

  • Sequence analysis of the intron cyclization junction indicates that the noncoded guanosine and one additional nucleotide are lost from the 5' end of the intron upon cyclization [35].
  • They are mechanistically investigated with atomic force microscopy techniques (AFM) on six different faces of 1 when o-phenylenediamine was the reagent (substitution, elimination, cyclization, elimination) and interpreted on the basis of known crystal structure data [36].
  • It is concluded that during phototherapy the predominant pathway for the removal of bilirubin from the body in the Gunn rat is by biliary excretion of the geometric photoisomers (EZ)- and (ZE)-bilirubin, derived from Z----E isomerization, and the structural photoisomer (EZ)-cyclobilirubin, formed from intramolecular endo-vinyl cyclization [37].
  • Syn- and anti-selective Prins cyclizations of delta,epsilon-unsaturated ketones to 1,3-halohydrins with Lewis acids [38].
  • The absolute configurations of the enantiomers of N,N,1-trimethyl-cis- and trans-1-phenyl-1,2,3,4-tetrahydro-3-naphthylamines (Ia and Ib) were assigned tentatively from the circular dichroism spectrum of a bridged ketone derived by cyclization of optically active 1-methyl-cis-1-phenyl-1,2,3,4-tetrahydro-3-naphthoic acid (IIa) [39].


  1. Cooperative behavior of Escherichia coli cell-division protein FtsZ assembly involves the preferential cyclization of long single-stranded fibrils. González, J.M., Vélez, M., Jiménez, M., Alfonso, C., Schuck, P., Mingorance, J., Vicente, M., Minton, A.P., Rivas, G. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  2. DNA knots reveal a chiral organization of DNA in phage capsids. Arsuaga, J., Vazquez, M., McGuirk, P., Trigueros, S., Sumners, d.e. .W., Roca, J. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  3. Steroid biosynthesis in prokaryotes: identification of myxobacterial steroids and cloning of the first bacterial 2,3(S)-oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca. Bode, H.B., Zeggel, B., Silakowski, B., Wenzel, S.C., Reichenbach, H., Müller, R. Mol. Microbiol. (2003) [Pubmed]
  4. Tetracenomycin F2 cyclase: intramolecular aldol condensation in the biosynthesis of tetracenomycin C in Streptomyces glaucescens. Shen, B., Hutchinson, C.R. Biochemistry (1993) [Pubmed]
  5. Crystal structure of histidine ammonia-lyase revealing a novel polypeptide modification as the catalytic electrophile. Schwede, T.F., Rétey, J., Schulz, G.E. Biochemistry (1999) [Pubmed]
  6. Reversibility of cyclization of the Tetrahymena rRNA intervening sequence: implication for the mechanism of splice site choice. Sullivan, F.X., Cech, T.R. Cell (1985) [Pubmed]
  7. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cech, T.R., Zaug, A.J., Grabowski, P.J. Cell (1981) [Pubmed]
  8. Structure and function of a squalene cyclase. Wendt, K.U., Poralla, K., Schulz, G.E. Science (1997) [Pubmed]
  9. Antibody catalyzed cationic cyclization. Li, T., Janda, K.D., Ashley, J.A., Lerner, R.A. Science (1994) [Pubmed]
  10. Bioactive conformation of luteinizing hormone-releasing hormone: evidence from a conformationally constrained analog. Freidinger, R.M., Veber, D.F., Perlow, D.S., Brooks, J.R., Saperstein, R. Science (1980) [Pubmed]
  11. Editing function of Escherichia coli cysteinyl-tRNA synthetase: cyclization of cysteine to cysteine thiolactone. Jakubowski, H. Nucleic Acids Res. (1994) [Pubmed]
  12. Expressed protein ligation to probe regiospecificity of heterocyclization in the peptide antibiotic microcin B17. Roy, R.S., Allen, O., Walsh, C.T. Chem. Biol. (1999) [Pubmed]
  13. Ferrous active site of isopenicillin N synthase: genetic and sequence analysis of the endogenous ligands. Borovok, I., Landman, O., Kreisberg-Zakarin, R., Aharonowitz, Y., Cohen, G. Biochemistry (1996) [Pubmed]
  14. Toxicity of pyroglutaminated amyloid beta-peptides 3(pE)-40 and -42 is similar to that of A beta1-40 and -42. Tekirian, T.L., Yang, A.Y., Glabe, C., Geddes, J.W. J. Neurochem. (1999) [Pubmed]
  15. Excision of the epothilone synthetase B cyclization domain and demonstration of in trans condensation/cyclodehydration activity. Kelly, W.L., Hillson, N.J., Walsh, C.T. Biochemistry (2005) [Pubmed]
  16. Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants. Pogson, B., McDonald, K.A., Truong, M., Britton, G., DellaPenna, D. Plant Cell (1996) [Pubmed]
  17. Characterization of the ATF/CREB site and its complex with GCN4. Hockings, S.C., Kahn, J.D., Crothers, D.M. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  18. A gene cluster for secondary metabolism in oat: implications for the evolution of metabolic diversity in plants. Qi, X., Bakht, S., Leggett, M., Maxwell, C., Melton, R., Osbourn, A. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  19. Predicting indirect readout effects in protein-DNA interactions. Zhang, Y., Xi, Z., Hegde, R.S., Shakked, Z., Crothers, D.M. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  20. On non-cyclooxygenase prostaglandin synthesis in the sea whip coral, Plexaura homomalla: an 8(R)-lipoxygenase pathway leads to formation of an alpha-ketol and a Racemic prostanoid. Brash, A.R., Baertschi, S.W., Ingram, C.D., Harris, T.M. J. Biol. Chem. (1987) [Pubmed]
  21. Regulation of selectin binding activity by cyclization of sialic acid moiety of carbohydrate ligands on human leukocytes. Mitsuoka, C., Ohmori, K., Kimura, N., Kanamori, A., Komba, S., Ishida, H., Kiso, M., Kannagi, R. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  22. Prostaglandin hydroperoxidase, an integral part of prostaglandin endoperoxide synthetase from bovine vesicular gland microsomes. Ohki, S., Ogino, N., Yamamoto, S., Hayaishi, O. J. Biol. Chem. (1979) [Pubmed]
  23. Synthesis and biological evaluation of a beauveriolide analogue library. Nagai, K., Doi, T., Sekiguchi, T., Namatame, I., Sunazuka, T., Tomoda, H., Omura, S., Takahashi, T. Journal of combinatorial chemistry. (2006) [Pubmed]
  24. In vivo control of soluble guanylate cyclase activation by nitric oxide: a kinetic analysis. Condorelli, P., George, S.C. Biophys. J. (2001) [Pubmed]
  25. Muscarinic actions of an N-methyl-N-2-bromoethylamino analog of oxotremorine (BR 401) in the mouse. Ringdahl, B., Jenden, D.J. J. Pharmacol. Exp. Ther. (1987) [Pubmed]
  26. Chemoenzymatic and template-directed synthesis of bioactive macrocyclic peptides. Grünewald, J., Marahiel, M.A. Microbiol. Mol. Biol. Rev. (2006) [Pubmed]
  27. A new function for CD38/ADP-ribosyl cyclase in nuclear Ca2+ homeostasis. Adebanjo, O.A., Anandatheerthavarada, H.K., Koval, A.P., Moonga, B.S., Biswas, G., Sun, L., Sodam, B.R., Bevis, P.J., Huang, C.L., Epstein, S., Lai, F.A., Avadhani, N.G., Zaidi, M. Nat. Cell Biol. (1999) [Pubmed]
  28. Protein splicing: an analysis of the branched intermediate and its resolution by succinimide formation. Xu, M.Q., Comb, D.G., Paulus, H., Noren, C.J., Shao, Y., Perler, F.B. EMBO J. (1994) [Pubmed]
  29. CD38/ADP-ribosyl cyclase: A new role in the regulation of osteoclastic bone resorption. Sun, L., Adebanjo, O.A., Moonga, B.S., Corisdeo, S., Anandatheerthavarada, H.K., Biswas, G., Arakawa, T., Hakeda, Y., Koval, A., Sodam, B., Bevis, P.J., Moser, A.J., Lai, F.A., Epstein, S., Troen, B.R., Kumegawa, M., Zaidi, M. J. Cell Biol. (1999) [Pubmed]
  30. Identification of residues of the epidermal growth factor receptor proximal to residue 45 of bound epidermal growth factor. Summerfield, A.E., Hudnall, A.K., Lukas, T.J., Guyer, C.A., Staros, J.V. J. Biol. Chem. (1996) [Pubmed]
  31. The Saccharomyces cerevisiae high mobility group box protein HMO1 contains two functional DNA binding domains. Kamau, E., Bauerle, K.T., Grove, A. J. Biol. Chem. (2004) [Pubmed]
  32. Constrained analogs of osteogenic peptides. Willick, G.E., Morley, P., Whitfield, J.F. Current medicinal chemistry. (2004) [Pubmed]
  33. Interaction of interferon regulatory factor-1 and nuclear factor kappaB during activation of inducible nitric oxide synthase transcription. Saura, M., Zaragoza, C., Bao, C., McMillan, A., Lowenstein, C.J. J. Mol. Biol. (1999) [Pubmed]
  34. C-terminal cyclization of an SDF-1 small peptide analogue dramatically increases receptor affinity and activation of the CXCR4 receptor. Tudan, C., Willick, G.E., Chahal, S., Arab, L., Law, P., Salari, H., Merzouk, A. J. Med. Chem. (2002) [Pubmed]
  35. Processing of phage T4 td-encoded RNA is analogous to the eukaryotic group I splicing pathway. Ehrenman, K., Pedersen-Lane, J., West, D., Herman, R., Maley, F., Belfort, M. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  36. Quantitative reaction cascades of ninhydrin in the solid state. Kaupp, G., Naimi-Jamal, M.R., Schmeyers, J. Chemistry (Weinheim an der Bergstrasse, Germany) (2002) [Pubmed]
  37. Biliary and urinary excretion rates and serum concentration changes of four bilirubin photoproducts in Gunn rats during total darkness and low or high illumination. Onishi, S., Ogino, T., Yokoyama, T., Isobe, K., Itoh, S., Yamakawa, T., Hashimoto, T. Biochem. J. (1984) [Pubmed]
  38. Syn- and anti-selective Prins cyclizations of delta,epsilon-unsaturated ketones to 1,3-halohydrins with Lewis acids. Miles, R.B., Davis, C.E., Coates, R.M. J. Org. Chem. (2006) [Pubmed]
  39. Substituted tetralins VI: Tentative assignment of absolute stereochemistry of 1-methyl-1-phenyl-1,2,3,4-tetrahydro-3-naphthoic acid and N,N,1-trimethyl-1-phenyl-1,2,3,4-tetrahydro-3-naphthylamine isomers. Galpin, D.R., Kandeel, E.M., Martin, A.R. Journal of pharmaceutical sciences. (1978) [Pubmed]
WikiGenes - Universities