The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Mediation of the effect of nicotine on Kir6.1 channels by superoxide anion production.

KATP channels are a complex of regulatory sulfonylurea receptor subunits and the pore-forming inward rectifiers such as Kir6. 1. Using the whole-cell patch-clamp technique, we investigated the interaction of nicotine with the Kir6.1 subunit as well as the underlying mechanism. Stable expression of Kir6.1 in HEK-293 cells yielded a detectable inward rectifier KATP current. This inward current was significantly inhibited by PNU-37883A and by a specific anti-Kir6.1 antibody. Nicotine at 30 and 100 microM increased Kir6.1 currents by 42 +/- 11.8% and 26.2 +/- 14.6%, respectively (n = 4-6, P < 0.05). In contrast, nicotine at 1-3 mM inhibited Kir6.1 currents (P < 0.05). Nicotine at 100 microM increased the production of superoxide anion (O2) by 20.3 +/- 5.7%, whereas at 1 mM it significantly decreased the production of O2 by 37.7 +/- 4.3%. Coapplication of hypoxanthine (HX) and xanthine oxidase ( XO) to the transfected HEK-293 cells resulted in a significant and reproducible increase in Kir6.1 currents (P < 0.05). The stimulatory effect of HX/ XO on Kir6.1 current was abolished by tempol, a scavenger of O2. Tempol also abolished the stimulatory effect of 30 muM nicotine on Kir6.1 currents. In conclusion, nicotine stimulates Kir6.1 channel at least in part through the production of O2.[1]

References

  1. Mediation of the effect of nicotine on Kir6.1 channels by superoxide anion production. Hanna, S.T., Cao, K., Sun, X., Wang, R. J. Cardiovasc. Pharmacol. (2005) [Pubmed]
 
WikiGenes - Universities