The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Mismatch repair proteins are activators of toxic responses to chromium-DNA damage.

Chromium(VI) is a toxic and carcinogenic metal that causes the formation of DNA phosphate-based adducts. Cr-DNA adducts are genotoxic in human cells, although they do not block replication in vitro. Here, we report that induction of cytotoxicity in Cr(VI)-treated human colon cells and mouse embryonic fibroblasts requires the presence of all major mismatch repair (MMR) proteins. Cr-DNA adducts lost their ability to block replication of Cr-modified plasmids in human colon cells lacking MLH1 protein. The presence of functional mismatch repair caused induction of p53-independent apoptosis associated with activation of caspases 2 and 7. Processing of Cr-DNA damage by mismatch repair resulted in the extensive formation of gamma-H2AX foci in G(2) phase, indicating generation of double-stranded breaks as secondary toxic lesions. Induction of gamma-H2AX foci was observed at 6 to 12 h postexposure, which was followed by activation of apoptosis in the absence of significant G(2) arrest. Our results demonstrate that mismatch repair system triggers toxic responses to Cr-DNA backbone modifications through stress mechanisms that are significantly different from those for other forms of DNA damage. Selection for Cr(VI) resistant, MMR-deficient cells may explain the very high frequency of lung cancers with microsatellite instability among chromate workers.[1]

References

  1. Mismatch repair proteins are activators of toxic responses to chromium-DNA damage. Peterson-Roth, E., Reynolds, M., Quievryn, G., Zhitkovich, A. Mol. Cell. Biol. (2005) [Pubmed]
 
WikiGenes - Universities