The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The contrasting roles of sedimentary plant-derived carbon and black carbon on sediment-spiked hydrophobic organic contaminant bioavailability to Diporeia species and Lumbriculus variegatus.

In bioavailability studies, the biota sediment accumulation factor (BSAF) is invoked to describe the thermodynamic partitioning of a hydrophobic organic contaminant (HOC) between the organism lipid and the organic carbon fraction of the sedimentary matrix and accounts for differences in bioavailability among sediments. Bioaccumulation experiments were performed with Lumbriculus variegatus and Diporeia species exposed in seven sediments dosed with 2,4,5,2',4',5'-hexachlorobiphenyl (HCBP) and benzo[a]pyrene (BaP) or pyrene (PY) and 3,4,3',4'-tetrachlorobiphenyl (TCBP). The BSAF values for the nonplanar HCBP were consistent with equilibrium partitioning theory (EQP) and averaged 2.87 for L. variegatus and 1.45 for Diporeia, while the BSAF values for the planar compounds (BaP, PY, TCBP) were generally lower than estimated from EQP (<1). Correcting the BSAF values of the planar compounds for enhanced sorption due to black carbon improved the BSAF values for L. variegatus, generally resulting in values consistent with EQP, but substantial variation remained for Diporeia. The BSAF values for the planar compounds showed significant positive correlations with plant-derived carbon in sediments (lignin and pigments) but were more consistent for L. variegatus than for Diporeia. These correlations imply that compounds sorbed to plant-derived carbon are more bioavailable since this material is more likely ingested providing a second exposure route.[1]


WikiGenes - Universities