The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Mushroom tyrosinase: catalase activity, inhibition, and suicide inactivation.

Mushroom tyrosinase exhibits catalase activity with hydrogen peroxide (H(2)O(2)) as substrate. In the absence of a one-electron donor substrate, H(2)O(2) is able to act as both oxidizing and reducing substrate. The kinetic parameters V(max) and K(m) that characterize the reaction were determined from the initial rates of oxygen gas production (V(0)(O)()2) under anaerobic conditions. The reaction can start from either of the two enzyme species present under anaerobic conditions: met-tyrosinase (E(m)) and deoxy-tyrosinase (E(d)). Thus, a molecule of H(2)O(2) can reduce E(m) to E(d) via the formation of oxy-tyrosinase (E(ox)) (E(m) + H(2) <==> O(2) right harpoon over left harpoon E(ox)), E(ox) releases oxygen into the medium and is transformed into E(d), which upon binding another molecule of H(2)O(2) is oxidized to E(m). The effect of pH and the action of inhibitors have also been studied. Catalase activity is favored by increased pH, with an optimum at pH = 6. 4. Inhibitors that are analogues of o-diphenol, binding to the active site coppers diaxially, do not inhibit catalase activity but do reduce diphenolase activity. However, chloride, which binds in the equatorial orientation to the protonated enzyme (E(m)H), inhibits both catalase and diphenolase activities. Suicide inactivation of the enzyme by H(2)O(2) has been demonstrated. A kinetic mechanism that is supported by the experimental results is presented and discussed.[1]

References

  1. Mushroom tyrosinase: catalase activity, inhibition, and suicide inactivation. García-Molina, F., Hiner, A.N., Fenoll, L.G., Rodríguez-Lopez, J.N., García-Ruiz, P.A., García-Cánovas, F., Tudela, J. J. Agric. Food Chem. (2005) [Pubmed]
 
WikiGenes - Universities