The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Functional characterization of novel alternatively spliced ClC-2 chloride channel variants in the heart.

A novel volume-regulated hyperpolarization-activated chloride inward rectifier channel (Cl.ir) was identified in mammalian heart. To investigate whether ClC-2 is the gene encoding Cl.ir channels in heart, ClC-2 cDNAs cloned from rat (rClC-2) and guinea pig (gpClC-2) hearts were functionally characterized. When expressed in NIH/3T3 cells, full-length rClC-2 yielded inwardly rectifying whole-cell currents with very slow activation kinetics (time constants > 1.7 s) upon hyperpolarization under hypotonic condition. The single-channel rClC-2 currents had a unitary slope conductance of 3.9 +/- 0.2 picosiemens. A novel variant with an in-frame deletion at the beginning of exon 15 that leads to a deletion of 45 bp (corresponding to 15 amino acids in alpha-helices O and P, rClC-2(Delta509-523)) was identified in rat heart. The relative transcriptional expression levels of full-length rClC-2 and rClC-2(Delta509-523) in rat heart were 0.018 +/- 0.003 and 0.028 +/- 0.006 arbitrary units, respectively, relative to glyceraldehyde-3-phosphate dehydrogenase (n = 5, p = nonsignificant). A similar partial exon 15 skipping with a deletion of 105 bp (35 amino acids in alpha-helices O-Q, gpClC-2(Delta509-543)) was also identified in guinea pig heart. Expression of both rClC-2(Delta509-523) and gpClC-2(Delta509-543) resulted in functional channels with phenotypic activation kinetics and many properties identical to those of endogenous Cl.ir channels in native rat and guinea pig cardiac myocytes, respectively. Intracellular dialysis of anti-ClC-2 antibody inhibited expressed ClC-2 channels and endogenous Cl.ir currents in native rat and guinea pig cardiac myocytes. These results demonstrate that novel deletion variants of ClC-2 due to partial exon 15 skipping may be expressed normally in heart and contribute to the formation of endogenous Cl.ir channels in native cardiac cells.[1]

References

  1. Functional characterization of novel alternatively spliced ClC-2 chloride channel variants in the heart. Britton, F.C., Wang, G.L., Huang, Z.M., Ye, L., Horowitz, B., Hume, J.R., Duan, D. J. Biol. Chem. (2005) [Pubmed]
 
WikiGenes - Universities