The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Enhanced sodium-dependent extrusion of magnesium in mutant cells established from a mouse renal tubular cell line.

To study the regulatory mechanisms of intracellular Mg(2+) concentration ([Mg(2+)](i)) in renal tubular cells as well as in other cell types, we established a mutant strain of mouse renal cortical tubular cells that can grow in culture media with very high extracellular Mg(2+) concentrations ([Mg(2+)](o) > 100 mM: 101Mg-tolerant cells). [Mg(2+)](i) was measured with a fluorescent indicator furaptra (mag-fura 2) in wild-type and 101Mg-tolerant cells. The average level of [Mg(2+)](i) in the 101Mg-tolerant cells was kept lower than that in the wild-type cells either at 51 mM or 1 mM [Mg(2+)](o). When [Mg(2+)](o) was lowered from 51 to 1 mM, the decrease in [Mg(2+)](i) was significantly faster in the 101Mg-tolerant cells than in the wild-type cells. These differences between the 101Mg-tolerant cells and the wild-type cells were abolished in the absence of extracellular Na(+) or in the presence of imipramine, a known inhibitor of Na(+)/Mg(2+) exchange. We conclude that Na(+)-dependent Mg(2+) transport activity is enhanced in the 101Mg-tolerant cells. The enhanced Mg(2+) extrusion may prevent [Mg(2+)](i) increase to higher levels and may be responsible for the Mg(2+) tolerance.[1]

References

  1. Enhanced sodium-dependent extrusion of magnesium in mutant cells established from a mouse renal tubular cell line. Watanabe, M., Konishi, M., Ohkido, I., Matsufuji, S. Am. J. Physiol. Renal Physiol. (2005) [Pubmed]
 
WikiGenes - Universities