The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

In vivo response of polylactic acid-alginate scaffolds and bone marrow-derived cells for cartilage tissue engineering.

Successful application of tissue-engineering techniques to damaged biological structures is determined by functional performance in vivo. This study evaluated the in vivo response of a tissue-engineered construct composed of a polylactic acid-alginate amalgam seeded with bone marrow-derived mesenchymal stem cells and stimulated in vitro with transforming growth factor beta for cartilage tissue engineering. Constructs were placed in cylindrical osteochondral defects in the canine femoral condyle and examined 6 weeks postoperatively by gross, histological, immunohistochemical, and biomechanical analyses. In the course of 6 weeks in vivo, the defects filled with a cartilaginous tissue regardless of whether cell-seeded (experimental) or cell-free (control) constructs were implanted; however, the quality of the tissue differed between the experimental and control defects. Cell-seeded experimental defects showed more cartilage-like matrix quality, cell distribution, and proteoglycan staining. Biomechanically, experimental and control specimens exhibited similar behavior; however, both tissues were still immature compared with normal cartilage. The evidence accumulated in this study showed a modest acceleration of the in vivo healing of cell-seeded constructs but also demonstrated a reparative response of cell-free constructs. This finding suggests that the constructs prepared from the PLA-alginate amalgam may serve as a means for host cell attachment.[1]

References

  1. In vivo response of polylactic acid-alginate scaffolds and bone marrow-derived cells for cartilage tissue engineering. Wayne, J.S., McDowell, C.L., Shields, K.J., Tuan, R.S. Tissue engineering. (2005) [Pubmed]
 
WikiGenes - Universities