The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Tissue Engineering

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Tissue Engineering

 

High impact information on Tissue Engineering

 

Biological context of Tissue Engineering

 

Anatomical context of Tissue Engineering

 

Associations of Tissue Engineering with chemical compounds

 

Gene context of Tissue Engineering

 

Analytical, diagnostic and therapeutic context of Tissue Engineering

References

  1. Surgical relief of causalgia with an artificial nerve guide tube: Successful surgical treatment of causalgia (Complex Regional Pain Syndrome Type II) by in situ tissue engineering with a polyglycolic acid-collagen tube. Inada, Y., Morimoto, S., Moroi, K., Endo, K., Nakamura, T. Pain (2005) [Pubmed]
  2. The use of pimonidazole to characterise hypoxia in the internal environment of an in vivo tissue engineering chamber. Hofer, S.O., Mitchell, G.M., Penington, A.J., Morrison, W.A., RomeoMeeuw, R., Keramidaris, E., Palmer, J., Knight, K.R. British journal of plastic surgery. (2005) [Pubmed]
  3. Enhancement of spine fusion using combined gene therapy and tissue engineering BMP-7-expressing bone marrow cells and allograft bone. Hidaka, C., Goshi, K., Rawlins, B., Boachie-Adjei, O., Crystal, R.G. Spine. (2003) [Pubmed]
  4. Wnt proteins are lipid-modified and can act as stem cell growth factors. Willert, K., Brown, J.D., Danenberg, E., Duncan, A.W., Weissman, I.L., Reya, T., Yates, J.R., Nusse, R. Nature (2003) [Pubmed]
  5. Donor-derived IP-10 initiates development of acute allograft rejection. Hancock, W.W., Gao, W., Csizmadia, V., Faia, K.L., Shemmeri, N., Luster, A.D. J. Exp. Med. (2001) [Pubmed]
  6. Of tardigrades, trehalose, and tissue engineering. Bradbury, J. Lancet (2001) [Pubmed]
  7. The application of bone morphogenetic proteins to dental tissue engineering. Nakashima, M., Reddi, A.H. Nat. Biotechnol. (2003) [Pubmed]
  8. Relevance and safety of telomerase for human tissue engineering. Klinger, R.Y., Blum, J.L., Hearn, B., Lebow, B., Niklason, L.E. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  9. Cellular and nerve regeneration within a biosynthetic extracellular matrix for corneal transplantation. Li, F., Carlsson, D., Lohmann, C., Suuronen, E., Vascotto, S., Kobuch, K., Sheardown, H., Munger, R., Nakamura, M., Griffith, M. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  10. Induction of periosteal callus formation by bone morphogenetic protein-2 employing adenovirus-mediated gene delivery. Uusitalo, H., Hiltunen, A., Ahonen, M., Kähäri, V.M., Aro, H., Vuorio, E. Matrix Biol. (2001) [Pubmed]
  11. Proliferation and phenotypic preservation of rat parotid acinar cells. Chen, M.H., Chen, R.S., Hsu, Y.H., Chen, Y.J., Young, T.H. Tissue engineering. (2005) [Pubmed]
  12. Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells, and biomimetic biomaterials. Reddi, A.H. Tissue engineering. (2000) [Pubmed]
  13. Importance of integrin beta1-mediated cell adhesion on biodegradable polymers under serum depletion in mesenchymal stem cells and chondrocytes. Lee, J.W., Kim, Y.H., Park, K.D., Jee, K.S., Shin, J.W., Hahn, S.B. Biomaterials (2004) [Pubmed]
  14. Endothelial cells derived from human embryonic stem cells. Levenberg, S., Golub, J.S., Amit, M., Itskovitz-Eldor, J., Langer, R. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  15. Incorporation of heparin-binding peptides into fibrin gels enhances neurite extension: an example of designer matrices in tissue engineering. Sakiyama, S.E., Schense, J.C., Hubbell, J.A. FASEB J. (1999) [Pubmed]
  16. Cationic polyelectrolyte hydrogel fosters fibroblast spreading, proliferation, and extracellular matrix production: Implications for tissue engineering. De Rosa, M., Carteni', M., Petillo, O., Calarco, A., Margarucci, S., Rosso, F., De Rosa, A., Farina, E., Grippo, P., Peluso, G. J. Cell. Physiol. (2004) [Pubmed]
  17. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Yoo, H.S., Lee, E.A., Yoon, J.J., Park, T.G. Biomaterials (2005) [Pubmed]
  18. In vivo response of polylactic acid-alginate scaffolds and bone marrow-derived cells for cartilage tissue engineering. Wayne, J.S., McDowell, C.L., Shields, K.J., Tuan, R.S. Tissue engineering. (2005) [Pubmed]
  19. Chimeric peptides of statherin and osteopontin that bind hydroxyapatite and mediate cell adhesion. Gilbert, M., Shaw, W.J., Long, J.R., Nelson, K., Drobny, G.P., Giachelli, C.M., Stayton, P.S. J. Biol. Chem. (2000) [Pubmed]
  20. Activation of human telomerase reverse transcriptase expression by some new symmetrical bis-substituted derivatives of the anthraquinone. Huang, H.S., Chiou, J.F., Fong, Y., Hou, C.C., Lu, Y.C., Wang, J.Y., Shih, J.W., Pan, Y.R., Lin, J.J. J. Med. Chem. (2003) [Pubmed]
  21. Osteogenic activity of vanadyl(IV)-ascorbate complex: Evaluation of its mechanism of action. Cortizo, A.M., Molinuevo, M.S., Barrio, D.A., Bruzzone, L. Int. J. Biochem. Cell Biol. (2006) [Pubmed]
  22. Preparation of gamma-PGA/chitosan composite tissue engineering matrices. Hsieh, C.Y., Tsai, S.P., Wang, D.M., Chang, Y.N., Hsieh, H.J. Biomaterials (2005) [Pubmed]
  23. Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Baier Leach, J., Bivens, K.A., Patrick, C.W., Schmidt, C.E. Biotechnol. Bioeng. (2003) [Pubmed]
  24. Fibroblast growth factor (FGF) 18 signals through FGF receptor 3 to promote chondrogenesis. Davidson, D., Blanc, A., Filion, D., Wang, H., Plut, P., Pfeffer, G., Buschmann, M.D., Henderson, J.E. J. Biol. Chem. (2005) [Pubmed]
  25. Osteogenesis versus chondrogenesis by BMP-2 and BMP-7 in adipose stem cells. Knippenberg, M., Helder, M.N., Zandieh Doulabi, B., Wuisman, P.I., Klein-Nulend, J. Biochem. Biophys. Res. Commun. (2006) [Pubmed]
  26. WNT2B: comparative integromics and clinical applications (Review). Katoh, M. Int. J. Mol. Med. (2005) [Pubmed]
  27. Overview of bone morphogenetic proteins. Wozney, J.M. Spine. (2002) [Pubmed]
  28. Interaction between insulin-like growth factor-1 with other growth factors in serum depleted culture medium for human cartilage engineering. Chua, K.H., Aminuddin, B.S., Fuzina, N.H., Ruszymah, B.H. Med. J. Malaysia (2004) [Pubmed]
  29. Muscle-derived cell-mediated ex vivo gene therapy for urological dysfunction. Huard, J., Yokoyama, T., Pruchnic, R., Qu, Z., Li, Y., Lee, J.Y., Somogyi, G.T., de Groat, W.C., Chancellor, M.B. Gene Ther. (2002) [Pubmed]
  30. In situ crosslinkable hyaluronan hydrogels for tissue engineering. Zheng Shu, X., Liu, Y., Palumbo, F.S., Luo, Y., Prestwich, G.D. Biomaterials (2004) [Pubmed]
  31. Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Oh, S.H., Kang, S.G., Kim, E.S., Cho, S.H., Lee, J.H. Biomaterials (2003) [Pubmed]
  32. Localized Angiogenesis Induced by Human Vascular Endothelial Growth Factor-Activated PLGA Sponge. Elcin, A.E., Elcin, Y.M. Tissue engineering. (2006) [Pubmed]
  33. Mechanical stimulation of MC3T3 osteoblastic cells in a bone tissue-engineering bioreactor enhances prostaglandin E2 release. Vance, J., Galley, S., Liu, D.F., Donahue, S.W. Tissue engineering. (2005) [Pubmed]
 
WikiGenes - Universities