The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Mesenchymal Stem Cells

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Mesenchymal Stem Cells

 

Psychiatry related information on Mesenchymal Stem Cells

 

High impact information on Mesenchymal Stem Cells

 

Chemical compound and disease context of Mesenchymal Stem Cells

 

Biological context of Mesenchymal Stem Cells

 

Anatomical context of Mesenchymal Stem Cells

 

Associations of Mesenchymal Stem Cells with chemical compounds

 

Gene context of Mesenchymal Stem Cells

 

Analytical, diagnostic and therapeutic context of Mesenchymal Stem Cells

References

  1. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. Koç, O.N., Gerson, S.L., Cooper, B.W., Dyhouse, S.M., Haynesworth, S.E., Caplan, A.I., Lazarus, H.M. J. Clin. Oncol. (2000) [Pubmed]
  2. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Nakamizo, A., Marini, F., Amano, T., Khan, A., Studeny, M., Gumin, J., Chen, J., Hentschel, S., Vecil, G., Dembinski, J., Andreeff, M., Lang, F.F. Cancer Res. (2005) [Pubmed]
  3. The fate of mesenchymal stem cells transplanted into immunocompetent neonatal mice: implications for skeletal gene therapy via stem cells. Niyibizi, C., Wang, S., Mi, Z., Robbins, P.D. Mol. Ther. (2004) [Pubmed]
  4. Treatment of myocardial ischemia with bone marrow-derived mesenchymal stem cells overexpressing hepatocyte growth factor. Duan, H.F., Wu, C.T., Wu, D.L., Lu, Y., Liu, H.J., Ha, X.Q., Zhang, Q.W., Wang, H., Jia, X.X., Wang, L.S. Mol. Ther. (2003) [Pubmed]
  5. Enhanced osteoinduction by mesenchymal stem cells transfected with a fiber-mutant adenoviral BMP2 gene. Tsuda, H., Wada, T., Yamashita, T., Hamada, H. The journal of gene medicine. (2005) [Pubmed]
  6. Bone marrow triglyceride accumulation and hormonal changes during long-term alcohol intake in male and female rats. Wezeman, F.H., Gong, Z. Alcohol. Clin. Exp. Res. (2001) [Pubmed]
  7. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Mangi, A.A., Noiseux, N., Kong, D., He, H., Rezvani, M., Ingwall, J.S., Dzau, V.J. Nat. Med. (2003) [Pubmed]
  8. Smad3-dependent nuclear translocation of beta-catenin is required for TGF-beta1-induced proliferation of bone marrow-derived adult human mesenchymal stem cells. Jian, H., Shen, X., Liu, I., Semenov, M., He, X., Wang, X.F. Genes Dev. (2006) [Pubmed]
  9. Wnt/beta-catenin signaling is sufficient and necessary for synovial joint formation. Guo, X., Day, T.F., Jiang, X., Garrett-Beal, L., Topol, L., Yang, Y. Genes Dev. (2004) [Pubmed]
  10. Tension precedes commitment-even for a stem cell. Settleman, J. Mol. Cell (2004) [Pubmed]
  11. Mesenchymal stem cells in perichondrium express activated leukocyte cell adhesion molecule and participate in bone marrow formation. Arai, F., Ohneda, O., Miyamoto, T., Zhang, X.Q., Suda, T. J. Exp. Med. (2002) [Pubmed]
  12. Transplant of mesenchymal stem cells and hydroxyapatite ceramics to treat severe osteochondral damage after septic arthritis of the knee. Adachi, N., Ochi, M., Deie, M., Ito, Y. J. Rheumatol. (2005) [Pubmed]
  13. Systemically administered rhBMP-2 promotes MSC activity and reverses bone and cartilage loss in osteopenic mice. Turgeman, G., Zilberman, Y., Zhou, S., Kelly, P., Moutsatsos, I.K., Kharode, Y.P., Borella, L.E., Bex, F.J., Komm, B.S., Bodine, P.V., Gazit, D. J. Cell. Biochem. (2002) [Pubmed]
  14. 111In oxine labelled mesenchymal stem cell SPECT after intravenous administration in myocardial infarction. Chin, B.B., Nakamoto, Y., Bulte, J.W., Pittenger, M.F., Wahl, R., Kraitchman, D.L. Nuclear medicine communications. (2003) [Pubmed]
  15. Differentiation of mesenchymal stem cells towards a nucleus pulposus-like phenotype in vitro: implications for cell-based transplantation therapy. Risbud, M.V., Albert, T.J., Guttapalli, A., Vresilovic, E.J., Hillibrand, A.S., Vaccaro, A.R., Shapiro, I.M. Spine. (2004) [Pubmed]
  16. Myf-5 and myoD genes are activated in distinct mesenchymal stem cells and determine different skeletal muscle cell lineages. Braun, T., Arnold, H.H. EMBO J. (1996) [Pubmed]
  17. Infant hypervitaminosis A causes severe anemia and thrombocytopenia: evidence of a retinol-dependent bone marrow cell growth inhibition. Perrotta, S., Nobili, B., Rossi, F., Criscuolo, M., Iolascon, A., Di Pinto, D., Passaro, I., Cennamo, L., Oliva, A., Della Ragione, F. Blood (2002) [Pubmed]
  18. Feedback interactions between MKP3 and ERK MAP kinase control scleraxis expression and the specification of rib progenitors in the developing chick somite. Smith, T.G., Sweetman, D., Patterson, M., Keyse, S.M., Münsterberg, A. Development (2005) [Pubmed]
  19. Select HIV protease inhibitors alter bone and fat metabolism ex vivo. Jain, R.G., Lenhard, J.M. J. Biol. Chem. (2002) [Pubmed]
  20. Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300 recruitment. Furumatsu, T., Tsuda, M., Taniguchi, N., Tajima, Y., Asahara, H. J. Biol. Chem. (2005) [Pubmed]
  21. In vitro and in vivo evidence for orphan nuclear receptor RORalpha function in bone metabolism. Meyer, T., Kneissel, M., Mariani, J., Fournier, B. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  22. VCAM-1 expression in adult hematopoietic and nonhematopoietic cells is controlled by tissue-inductive signals and reflects their developmental origin. Ulyanova, T., Scott, L.M., Priestley, G.V., Jiang, Y., Nakamoto, B., Koni, P.A., Papayannopoulou, T. Blood (2005) [Pubmed]
  23. Cancer/testis antigen expression in human mesenchymal stem cells: down-regulation of SSX impairs cell migration and matrix metalloproteinase 2 expression. Cronwright, G., Le Blanc, K., Götherström, C., Darcy, P., Ehnman, M., Brodin, B. Cancer Res. (2005) [Pubmed]
  24. Concentrative uptake of cyclic ADP-ribose generated by BST-1+ stroma stimulates proliferation of human hematopoietic progenitors. Podestà, M., Benvenuto, F., Pitto, A., Figari, O., Bacigalupo, A., Bruzzone, S., Guida, L., Franco, L., Paleari, L., Bodrato, N., Usai, C., De Flora, A., Zocchi, E. J. Biol. Chem. (2005) [Pubmed]
  25. Regulation of human skeletal stem cells differentiation by Dlk1/Pref-1. Abdallah, B.M., Jensen, C.H., Gutierrez, G., Leslie, R.G., Jensen, T.G., Kassem, M. J. Bone Miner. Res. (2004) [Pubmed]
  26. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Ortiz, L.A., Gambelli, F., McBride, C., Gaupp, D., Baddoo, M., Kaminski, N., Phinney, D.G. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  27. Peroxisome proliferator-activated receptor gamma (PPARgamma ) as a molecular target for the soy phytoestrogen genistein. Dang, Z.C., Audinot, V., Papapoulos, S.E., Boutin, J.A., Löwik, C.W. J. Biol. Chem. (2003) [Pubmed]
  28. Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. Morigi, M., Imberti, B., Zoja, C., Corna, D., Tomasoni, S., Abbate, M., Rottoli, D., Angioletti, S., Benigni, A., Perico, N., Alison, M., Remuzzi, G. J. Am. Soc. Nephrol. (2004) [Pubmed]
  29. A novel partial agonist of peroxisome proliferator-activated receptor-gamma (PPARgamma) recruits PPARgamma-coactivator-1alpha, prevents triglyceride accumulation, and potentiates insulin signaling in vitro. Burgermeister, E., Schnoebelen, A., Flament, A., Benz, J., Stihle, M., Gsell, B., Rufer, A., Ruf, A., Kuhn, B., Märki, H.P., Mizrahi, J., Sebokova, E., Niesor, E., Meyer, M. Mol. Endocrinol. (2006) [Pubmed]
  30. Suicide gene transduction sensitizes murine embryonic and human mesenchymal stem cells to ablation on demand-- a fail-safe protection against cellular misbehavior. Fareed, M.U., Moolten, F.L. Gene Ther. (2002) [Pubmed]
  31. CCN1/Cyr61 is regulated by the canonical Wnt signal and plays an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells. Si, W., Kang, Q., Luu, H.H., Park, J.K., Luo, Q., Song, W.X., Jiang, W., Luo, X., Li, X., Yin, H., Montag, A.G., Haydon, R.C., He, T.C. Mol. Cell. Biol. (2006) [Pubmed]
  32. Species- and cell type-specific interactions between CD47 and human SIRPalpha. Subramanian, S., Parthasarathy, R., Sen, S., Boder, E.T., Discher, D.E. Blood (2006) [Pubmed]
  33. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. Jaiswal, R.K., Jaiswal, N., Bruder, S.P., Mbalaviele, G., Marshak, D.R., Pittenger, M.F. J. Biol. Chem. (2000) [Pubmed]
  34. Nkx3.2-mediated repression of Runx2 promotes chondrogenic differentiation. Lengner, C.J., Hassan, M.Q., Serra, R.W., Lepper, C., van Wijnen, A.J., Stein, J.L., Lian, J.B., Stein, G.S. J. Biol. Chem. (2005) [Pubmed]
  35. Connective tissue growth factor (CTGF) is regulated by Wnt and bone morphogenetic proteins signaling in osteoblast differentiation of mesenchymal stem cells. Luo, Q., Kang, Q., Si, W., Jiang, W., Park, J.K., Peng, Y., Li, X., Luu, H.H., Luo, J., Montag, A.G., Haydon, R.C., He, T.C. J. Biol. Chem. (2004) [Pubmed]
  36. Intracerebral transplantation of mesenchymal stem cells into acid sphingomyelinase-deficient mice delays the onset of neurological abnormalities and extends their life span. Jin, H.K., Carter, J.E., Huntley, G.W., Schuchman, E.H. J. Clin. Invest. (2002) [Pubmed]
  37. Estrogens activate bone morphogenetic protein-2 gene transcription in mouse mesenchymal stem cells. Zhou, S., Turgeman, G., Harris, S.E., Leitman, D.C., Komm, B.S., Bodine, P.V., Gazit, D. Mol. Endocrinol. (2003) [Pubmed]
  38. Purmorphamine induces osteogenesis by activation of the hedgehog signaling pathway. Wu, X., Walker, J., Zhang, J., Ding, S., Schultz, P.G. Chem. Biol. (2004) [Pubmed]
  39. Glucocorticoid regulation of human BMP-6 transcription. Liu, Y., Titus, L., Barghouthi, M., Viggeswarapu, M., Hair, G., Boden, S.D. Bone (2004) [Pubmed]
  40. I.V. infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Nomura, T., Honmou, O., Harada, K., Houkin, K., Hamada, H., Kocsis, J.D. Neuroscience (2005) [Pubmed]
 
WikiGenes - Universities