The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Fenton-type reactions and iron concentrations in the midgut fluids of tree-feeding caterpillars.

Peroxides are formed in the midgut fluids of caterpillars when ingested tannins and other phenolic compounds oxidize. If these peroxides broke down in the presence of redox-active metal ions, they would form damaging free radicals (Fenton-type reactions). Elemental iron is present in relatively large amounts in leaves and artificial diets, but little is known about its concentration and redox state in midgut fluids, or the extent of Fenton-type reactions in these conditions. This study compared the levels of hydroxyl radicals and iron in the midgut fluids of two species of caterpillars: Orgyia leucostigma, in which phenol oxidation is limited, and Malacosoma disstria, in which phenol oxidation is more extensive. We tested two hypotheses: (1) higher levels of hydroxyl radicals are formed in M. disstria (consistent with the higher concentrations of hydrogen peroxide in this species), and (2) lower concentrations of iron are present in O. leucostigma (providing greater protection of its midgut fluids from oxidative damage). Hydroxyl radical levels increased greatly in M. disstria, but not in O. leucostigma, when they consumed a tannin-containing diet, supporting the first hypothesis. Protein oxidation was also significantly increased in the midgut fluids of M. disstria that ingested tannic acid, consistent with hydroxyl radical damage. Contrary to the second hypothesis, similar concentrations of iron (70 microM) remained in solution or suspension in both species of caterpillars on an artificial diet. Over 90% of this iron appeared to be in the reduced (catalytically active) state in both species. We conclude that tree-feeding caterpillars protect their midgut fluids from oxidative damage caused by Fenton-type reactions by limiting the formation of peroxides, rather than by limiting the availability of reduced iron.[1]


  1. Fenton-type reactions and iron concentrations in the midgut fluids of tree-feeding caterpillars. Barbehenn, R., Dodick, T., Poopat, U., Spencer, B. Arch. Insect Biochem. Physiol. (2005) [Pubmed]
WikiGenes - Universities