The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Inhibition of phospholipase C activity in Drosophila photoreceptors by 1,2-bis(2-aminophenoxy)ethane N,N,N',N'-tetraacetic acid (BAPTA) and di-bromo BAPTA.

In vivo light-induced and basal hydrolysis of phosphatidyl inositol 4,5-bisphosphate (PIP2) by phospholipase C ( PLC) were monitored in Drosophila photoreceptors using genetically targeted PIP2-sensitive ion channels (Kir2.1) as electrophysiological biosensors for PIP2. In cells loaded via patch pipettes with varying concentrations of Ca2+ buffered by 4 mM free BAPTA, light-induced PLC activity, showed an apparent bell-shaped dependence on free Ca2+ (maximum at "100 nM", approximately 10-fold inhibition at <10nM or approximately 1 microM). However, experiments where the total BAPTA concentration was varied whilst free [Ca2+] was maintained constant indicated that inhibition of PLC at higher (>100 nM) nominal Ca2+ concentrations was independent of Ca2+ and due to inhibition by BAPTA itself (IC50 approximately 8 mM). Di-bromo BAPTA (DBB) was yet more potent at inhibiting PLC activity (IC50 approximately 1mM). Both BAPTA and DBB also appeared to induce a modest, but less severe inhibition of basal PLC activity. By contrast, EGTA, failed to inhibit PLC activity when pre-loaded with Ca2+, but like BAPTA, inhibited both basal and light-induced PLC activity when introduced without Ca2+. The results indicate that both BAPTA and DBB inhibit PLC activity independently of their role as Ca2+ chelators, whilst non-physiologically low (<100 nM) levels of Ca2+ suppress both basal and light-induced PLC activity.[1]

References

 
WikiGenes - Universities