The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Hansenula polymorpha NMR2 and NMR4, two new loci involved in nitrogen metabolite repression.

In the yeast Hansenula polymorpha (Pichia angusta) nitrate assimilation is tightly regulated and subject to a dual control: nitrogen metabolite repression (NMR), triggered by reduced nitrogen compounds, and induction, elicited by nitrate itself. In a previous paper [Serrani, F., Rossi, B. and Berardi, E (2001) Nitrogen metabolite repression in Hansenula polymorpha: the nmrl-l mutation. Curr. Genet. 40, 243-250], we identified five loci (NMR1-NMR5) involved in NMR, and characterised one of them (NMR1), which likely identifies a regulatory factor. Here, we describe two more mutants, namely nmr2-1 and nmr4-1. The first one possibly identifies a regulatory factor involved in nitrogen metabolite repression by various nitrogen sources alternative to ammonium. The second one, apparently involved in ammonium assimilation, probably has sensor functions.[1]

References

  1. Hansenula polymorpha NMR2 and NMR4, two new loci involved in nitrogen metabolite repression. Rossi, B., Manasse, S., Serrani, F., Berardi, E. FEMS Yeast Res. (2005) [Pubmed]
 
WikiGenes - Universities