Inhibition of chronic rejection and development of tolerogenic T cells after ICOS-ICOSL and CD40-CD40L co-stimulation blockade.
BACKGROUND: Blockade of the CD40-CD40L pathway results in long-term allograft survival but does not prevent chronic rejection. ICOS-ICOSL are members of the CD28-B7 family that play an important role in T-cell activation. METHODS: The authors analyzed the effect of single or combined treatment with an anti-ICOS monoclonal antibody and the fusion molecule CD40 immunoglobulin (Ig) on acute and chronic rejection of heart allografts in rats. RESULTS: Treatment with anti-ICOS resulted in a modest but significant prolongation of allograft survival. Treatment with CD40Ig resulted in long-term graft survival but the cardiac grafts developed chronic rejection lesions. Combined CD40Ig+anti-ICOS treatment led to indefinite graft survival in all recipients and a significant decrease of chronic rejection lesions compared with CD40Ig alone. Importantly, four of the seven CD40Ig+anti-ICOS-treated recipients showed a complete absence of chronic rejection lesions, whereas all of the CD40Ig-treated recipients showed chronic rejection. The CD40Ig+anti-ICOS group also showed significant decreased graft infiltration, decreased antidonor cytotoxic T-lymphocyte activity, and decreased alloantibodies compared with the CD40Ig-treated group. Adoptive transfer of splenocytes indefinitely prolonged allograft survival, whereas those depleted of T cells did not, suggesting the development of T-regulatory mechanisms. CONCLUSIONS. These data indicate that the chronic rejection mechanisms that are CD40-CD40L independent are ICOS-ICOSL dependent. These results were obtained with conservation of cognate immune responses and development of tolerogenic T cells.[1]References
- Inhibition of chronic rejection and development of tolerogenic T cells after ICOS-ICOSL and CD40-CD40L co-stimulation blockade. Guillonneau, C., Aubry, V., Renaudin, K., Séveno, C., Usal, C., Tezuka, K., Anegon, I. Transplantation (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg