The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Regulatory networks in embryo-derived pluripotent stem cells.

Mammalian development requires the specification of over 200 cell types from a single totipotent cell. Investigation of the regulatory networks that are responsible for pluripotency in embryo-derived stem cells is fundamental to understanding mammalian development and realizing therapeutic potential. Extracellular signals and second messengers modulate cell-autonomous regulators such as OCT4, SOX2 and Nanog in a combinatorial complexity. Knowledge of this circuitry might reveal how to achieve phenotypic changes without the genetic manipulation of Oct4, Nanog and other toti/pluripotency-associated genes.[1]

References

  1. Regulatory networks in embryo-derived pluripotent stem cells. Boiani, M., Schöler, H.R. Nat. Rev. Mol. Cell Biol. (2005) [Pubmed]
 
WikiGenes - Universities