Regulatory networks in embryo-derived pluripotent stem cells.
Mammalian development requires the specification of over 200 cell types from a single totipotent cell. Investigation of the regulatory networks that are responsible for pluripotency in embryo-derived stem cells is fundamental to understanding mammalian development and realizing therapeutic potential. Extracellular signals and second messengers modulate cell-autonomous regulators such as OCT4, SOX2 and Nanog in a combinatorial complexity. Knowledge of this circuitry might reveal how to achieve phenotypic changes without the genetic manipulation of Oct4, Nanog and other toti/pluripotency-associated genes.[1]References
- Regulatory networks in embryo-derived pluripotent stem cells. Boiani, M., Schöler, H.R. Nat. Rev. Mol. Cell Biol. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg