The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Excitotoxicity mediated by Ca2+-permeable GluR4-containing AMPA receptors involves the AP-1 transcription factor.

Cells preferentially expressing GluR4-containing alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors are particularly sensitive to excitotoxicity mediated through non-N-methyl-D-aspartate receptors. However, the excitotoxic signalling pathways associated with GluR4-containing AMPA receptors are not known. In this work, we investigated the downstream signals coupled to excitotoxicity mediated by Ca2+-permeable GluR4-containing AMPA receptors, using a HEK 293 cell line constitutively expressing the GluR4flip subunit of AMPA receptors (HEK-GluR4). Glutamate stimulation of GluR4-containing AMPA receptors decreased cell viability, in a calcium-dependent manner, when the receptor desensitisation was prevented with cyclothiazide. The excitotoxic stimulation mediated through GluR4-containing AMPA receptors increased activator protein-1 (AP-1) DNA-binding activity. Inhibition of the AP-1 activity by overexpression of a c-Jun dominant-negative form protected HEK-GluR4 cells against excitotoxic damage. Taken together, the results indicate that overactivation of Ca2+-permeable GluR4-containing AMPA receptors is coupled to a death pathway mediated, at least in part, by the AP-1 transcription factor.[1]

References

  1. Excitotoxicity mediated by Ca2+-permeable GluR4-containing AMPA receptors involves the AP-1 transcription factor. Santos, A.E., Duarte, C.B., Iizuka, M., Barsoumian, E.L., Ham, J., Lopes, M.C., Carvalho, A.P., Carvalho, A.L. Cell Death Differ. (2006) [Pubmed]
 
WikiGenes - Universities